Fair Differentiable Neural Network Architecture Search for Long-Tailed Data with Self-Supervised Learning
- URL: http://arxiv.org/abs/2406.16949v1
- Date: Wed, 19 Jun 2024 12:39:02 GMT
- Title: Fair Differentiable Neural Network Architecture Search for Long-Tailed Data with Self-Supervised Learning
- Authors: Jiaming Yan,
- Abstract summary: This paper explores to improve the searching and training performance of NAS on long-tailed datasets.
We first discuss the related works about NAS and the deep learning method for long-tailed datasets.
Then, we focus on an existing work, called SSF-NAS, which integrates the self-supervised learning and fair differentiable NAS.
Finally, we conducted a series of experiments on the CIFAR10-LT dataset for performance evaluation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in artificial intelligence (AI) have positioned deep learning (DL) as a pivotal technology in fields like computer vision, data mining, and natural language processing. A critical factor in DL performance is the selection of neural network architecture. Traditional predefined architectures often fail to adapt to different data distributions, making it challenging to achieve optimal performance. Neural architecture search (NAS) offers a solution by automatically designing architectures tailored to specific datasets. However, the effectiveness of NAS diminishes on long-tailed datasets, where a few classes have abundant samples, and many have few, leading to biased models.In this paper, we explore to improve the searching and training performance of NAS on long-tailed datasets. Specifically, we first discuss the related works about NAS and the deep learning method for long-tailed datasets.Then, we focus on an existing work, called SSF-NAS, which integrates the self-supervised learning and fair differentiable NAS to making NAS achieve better performance on long-tailed datasets.An detailed description about the fundamental techniques for SSF-NAS is provided in this paper, including DARTS, FairDARTS, and Barlow Twins. Finally, we conducted a series of experiments on the CIFAR10-LT dataset for performance evaluation, where the results are align with our expectation.
Related papers
- Insights from the Use of Previously Unseen Neural Architecture Search Datasets [6.239015118429603]
We present eight new datasets created for a series of NAS Challenges: AddNIST, Language, MultNIST, CIFARTile, Gutenberg, Isabella, GeoClassing, and Chesseract.
These datasets and challenges are developed to direct attention to issues in NAS development and to encourage authors to consider how their models will perform on datasets unknown to them at development time.
arXiv Detail & Related papers (2024-04-02T16:48:34Z) - Meta-prediction Model for Distillation-Aware NAS on Unseen Datasets [55.2118691522524]
Distillation-aware Neural Architecture Search (DaNAS) aims to search for an optimal student architecture.
We propose a distillation-aware meta accuracy prediction model, DaSS (Distillation-aware Student Search), which can predict a given architecture's final performances on a dataset.
arXiv Detail & Related papers (2023-05-26T14:00:35Z) - DiffusionNAG: Predictor-guided Neural Architecture Generation with Diffusion Models [56.584561770857306]
We propose a novel conditional Neural Architecture Generation (NAG) framework based on diffusion models, dubbed DiffusionNAG.
Specifically, we consider the neural architectures as directed graphs and propose a graph diffusion model for generating them.
We validate the effectiveness of DiffusionNAG through extensive experiments in two predictor-based NAS scenarios: Transferable NAS and Bayesian Optimization (BO)-based NAS.
When integrated into a BO-based algorithm, DiffusionNAG outperforms existing BO-based NAS approaches, particularly in the large MobileNetV3 search space on the ImageNet 1K dataset.
arXiv Detail & Related papers (2023-05-26T13:58:18Z) - NASiam: Efficient Representation Learning using Neural Architecture
Search for Siamese Networks [76.8112416450677]
Siamese networks are one of the most trending methods to achieve self-supervised visual representation learning (SSL)
NASiam is a novel approach that uses for the first time differentiable NAS to improve the multilayer perceptron projector and predictor (encoder/predictor pair)
NASiam reaches competitive performance in both small-scale (i.e., CIFAR-10/CIFAR-100) and large-scale (i.e., ImageNet) image classification datasets while costing only a few GPU hours.
arXiv Detail & Related papers (2023-01-31T19:48:37Z) - Generalization Properties of NAS under Activation and Skip Connection
Search [66.8386847112332]
We study the generalization properties of Neural Architecture Search (NAS) under a unifying framework.
We derive the lower (and upper) bounds of the minimum eigenvalue of the Neural Tangent Kernel (NTK) under the (in)finite-width regime.
We show how the derived results can guide NAS to select the top-performing architectures, even in the case without training.
arXiv Detail & Related papers (2022-09-15T12:11:41Z) - UnrealNAS: Can We Search Neural Architectures with Unreal Data? [84.78460976605425]
Neural architecture search (NAS) has shown great success in the automatic design of deep neural networks (DNNs)
Previous work has analyzed the necessity of having ground-truth labels in NAS and inspired broad interest.
We take a further step to question whether real data is necessary for NAS to be effective.
arXiv Detail & Related papers (2022-05-04T16:30:26Z) - Meta-Learning of NAS for Few-shot Learning in Medical Image Applications [10.666687733540668]
Neural Architecture Search (NAS) has motivated various applications in medical imaging.
NAS requires the availability of large annotated data, considerable resources, and pre-defined tasks.
We introduce various NAS approaches in medical imaging with different applications such as classification, segmentation, detection, reconstruction.
arXiv Detail & Related papers (2022-03-16T21:21:51Z) - FDNAS: Improving Data Privacy and Model Diversity in AutoML [7.402044070683503]
We propose a Federated Direct Neural Architecture Search (FDNAS) framework that allows hardware-aware NAS from decentralized non-iid data of clients.
To further adapt for various data distributions of clients, inspired by meta-learning, a cluster Federated Direct Neural Architecture Search (CFDNAS) framework is proposed to achieve client-aware NAS.
arXiv Detail & Related papers (2020-11-06T14:13:42Z) - Binarized Neural Architecture Search for Efficient Object Recognition [120.23378346337311]
Binarized neural architecture search (BNAS) produces extremely compressed models to reduce huge computational cost on embedded devices for edge computing.
An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS.
arXiv Detail & Related papers (2020-09-08T15:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.