論文の概要: SRViT: Vision Transformers for Estimating Radar Reflectivity from Satellite Observations at Scale
- arxiv url: http://arxiv.org/abs/2406.16955v2
- Date: Fri, 28 Jun 2024 19:51:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 12:51:40.286873
- Title: SRViT: Vision Transformers for Estimating Radar Reflectivity from Satellite Observations at Scale
- Title(参考訳): SRViT:衛星観測から放射反射率を推定する視覚変換器
- Authors: Jason Stock, Kyle Hilburn, Imme Ebert-Uphoff, Charles Anderson,
- Abstract要約: 静止衛星画像から高分解能(3km)合成レーダ反射率場を大規模に生成するトランスフォーマーベースニューラルネットワークを提案する。
本研究は,アメリカ合衆国における気象事象の短期的対流予測の強化と数値天気予報のためのデータ同化の支援を目的とする。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a transformer-based neural network to generate high-resolution (3km) synthetic radar reflectivity fields at scale from geostationary satellite imagery. This work aims to enhance short-term convective-scale forecasts of high-impact weather events and aid in data assimilation for numerical weather prediction over the United States. Compared to convolutional approaches, which have limited receptive fields, our results show improved sharpness and higher accuracy across various composite reflectivity thresholds. Additional case studies over specific atmospheric phenomena support our quantitative findings, while a novel attribution method is introduced to guide domain experts in understanding model outputs.
- Abstract(参考訳): 静止衛星画像から高分解能(3km)合成レーダ反射率場を大規模に生成するトランスフォーマーベースニューラルネットワークを提案する。
本研究は,アメリカ合衆国における気象事象の短期的対流予測の強化と数値天気予報のためのデータ同化の支援を目的とする。
受容野が限られている畳み込みアプローチと比較して, 様々な反射率閾値において, シャープネスと精度が向上した。
特定の大気現象に関する追加のケーススタディは、我々の量的発見を支持し、新しい帰属法は、モデル出力を理解するための領域の専門家を導くために導入された。
関連論文リスト
- DiffSR: Learning Radar Reflectivity Synthesis via Diffusion Model from Satellite Observations [42.635670495018964]
我々はDiffSRと呼ばれる2段階拡散法を提案し、高周波の詳細と高値領域を生成する。
提案手法は, 最新技術(SOTA)の成果を達成し, 高周波の細部と高値領域を生成できることを実証する。
論文 参考訳(メタデータ) (2024-11-11T04:50:34Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
本稿では,Variデータ同化とディープラーニングの概念に基づくフレームワークを提案する。
この枠組みは、海面風速に関する高解像度のリッチインタイムを回復するために応用される。
論文 参考訳(メタデータ) (2023-12-14T13:40:39Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
本研究では,空間的不一致に対するレジリエンスを示す頑健な降水予測モデルを構築した。
提案手法は,textit4cast'23コンペティションの移行学習リーダーボードにおいて,textit1位を確保したモデルにおいて,予測精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-11-30T08:22:08Z) - Attention-Based Scattering Network for Satellite Imagery [0.0]
我々は、この散乱を利用して、訓練可能なパラメータを追加せずに高レベルの特徴を抽出する。
実験では、熱帯性サイクロンの強度を推定し、衛星画像から雷の発生を予測する有望な結果を示した。
論文 参考訳(メタデータ) (2022-10-21T18:25:34Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Predicting Landsat Reflectance with Deep Generative Fusion [2.867517731896504]
公共の衛星ミッションは一般に、空間分解能と時間分解能のトレードオフに結びついている。
これにより、植生の監視や人道的行動を支援する能力が損なわれる。
空間的・時間的特性の異なる製品を融合させて高解像度の光学画像を生成するための深部生成モデルの可能性を探る。
論文 参考訳(メタデータ) (2020-11-09T21:06:04Z) - Development and Interpretation of a Neural Network-Based Synthetic Radar
Reflectivity Estimator Using GOES-R Satellite Observations [0.02578242050187029]
本研究は,降雨時のGOES-Rシリーズ観測を再現する技術を開発することを目的とする。
畳み込みニューラルネットワーク(CNN)は、GOES-Rラジダスと雷を合成レーダー反射場に変換するために開発された。
論文 参考訳(メタデータ) (2020-04-16T19:57:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。