論文の概要: Are Language Models Actually Useful for Time Series Forecasting?
- arxiv url: http://arxiv.org/abs/2406.16964v2
- Date: Sat, 26 Oct 2024 01:43:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:16:53.315178
- Title: Are Language Models Actually Useful for Time Series Forecasting?
- Title(参考訳): 言語モデルは時系列予測に本当に有用か?
- Authors: Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, Thomas Hartvigsen,
- Abstract要約: LLM成分を除去したり,基本的な注意層に置き換えたりしても,予測性能は低下しないことがわかった。
また、計算コストがかなり高いにもかかわらず、事前訓練されたLLMは、スクラッチから訓練されたモデルに劣らないことが判明した。
我々は時系列エンコーダを探索し、パッチとアテンション構造がLLMベースの予測器と同様に動作することを示す。
- 参考スコア(独自算出の注目度): 21.378728572776897
- License:
- Abstract: Large language models (LLMs) are being applied to time series forecasting. But are language models actually useful for time series? In a series of ablation studies on three recent and popular LLM-based time series forecasting methods, we find that removing the LLM component or replacing it with a basic attention layer does not degrade forecasting performance -- in most cases, the results even improve! We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch, do not represent the sequential dependencies in time series, and do not assist in few-shot settings. Additionally, we explore time series encoders and find that patching and attention structures perform similarly to LLM-based forecasters.
- Abstract(参考訳): 大規模言語モデル(LLM)は時系列予測に適用されている。
しかし、言語モデルは実際に時系列に役立ちますか?
最近の3つのLLMベースの時系列予測手法に関する一連のアブレーション研究において、LCMコンポーネントを削除したり、基本的な注意層に置き換えたりしても、予測性能は低下しないことが分かりました。
また,計算コストが非常に高いにもかかわらず,事前学習したLLMは,スクラッチからトレーニングしたモデルに劣らず,時系列の逐次的依存関係を表現せず,数ショット設定を補助しないことがわかった。
さらに、時系列エンコーダを探索し、パッチやアテンション構造がLLMベースの予測器と同様に動作することを確認する。
関連論文リスト
- Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
大規模言語モデルは、センサデータ分析のような多くの重要なWebアプリケーションにおいて、印象的なパフォーマンスを示している。
本研究では,予測,分類,計算,異常検出など,主要な時系列タスクにLLMを適用することの有効性を評価する。
この結果から,LLMはこれらのコア時系列タスクに対して最小限のアドバンテージを提供し,データの時間構造を歪めてしまう可能性があることがわかった。
論文 参考訳(メタデータ) (2024-10-16T07:47:31Z) - Towards Time Series Reasoning with LLMs [0.4369058206183195]
本稿では,ゼロショット性能の強い領域にまたがる一般化可能な情報を学習する,新しいマルチモーダル時系列LPM手法を提案する。
提案モデルでは,特定の時系列特徴を反映した潜時表現を学習し,ゼロショット推論タスクのセットにおいてGPT-4oより優れることを示す。
論文 参考訳(メタデータ) (2024-09-17T17:23:44Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
大規模言語モデル(LLM)は多くの分野に適用され、近年急速に発展してきた。
近年の研究では、大規模な言語モデルを、さらなる微調整を行なわずに、アンフェロショット時系列推論として扱っている。
本研究は,LLMが周期性に欠けるデータセットにおいて,明確なパターンや傾向を持つ時系列予測において良好に機能することを示す。
論文 参考訳(メタデータ) (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
時系列を数値桁の列として符号化することにより、テキストの次トーケン予測として時系列予測をフレーム化することができる。
GPT-3 や LLaMA-2 のような大規模言語モデル (LLM) は、ダウンストリームタスクでトレーニングされた目的構築された時系列モデルの性能に匹敵する、あるいはそれ以上のレベルにおいて、驚くほどゼロショット・エクスポレート・時系列を生成できる。
論文 参考訳(メタデータ) (2023-10-11T19:01:28Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。