Are Language Models Actually Useful for Time Series Forecasting?
- URL: http://arxiv.org/abs/2406.16964v2
- Date: Sat, 26 Oct 2024 01:43:07 GMT
- Title: Are Language Models Actually Useful for Time Series Forecasting?
- Authors: Mingtian Tan, Mike A. Merrill, Vinayak Gupta, Tim Althoff, Thomas Hartvigsen,
- Abstract summary: We find that removing the LLM component or replacing it with a basic attention layer does not degrade forecasting performance.
We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch.
We explore time series encoders and find that patching and attention structures perform similarly to LLM-based forecasters.
- Score: 21.378728572776897
- License:
- Abstract: Large language models (LLMs) are being applied to time series forecasting. But are language models actually useful for time series? In a series of ablation studies on three recent and popular LLM-based time series forecasting methods, we find that removing the LLM component or replacing it with a basic attention layer does not degrade forecasting performance -- in most cases, the results even improve! We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch, do not represent the sequential dependencies in time series, and do not assist in few-shot settings. Additionally, we explore time series encoders and find that patching and attention structures perform similarly to LLM-based forecasters.
Related papers
- Revisited Large Language Model for Time Series Analysis through Modality Alignment [16.147350486106777]
Large Language Models have demonstrated impressive performance in many pivotal web applications such as sensor data analysis.
In this study, we assess the effectiveness of applying LLMs to key time series tasks, including forecasting, classification, imputation, and anomaly detection.
Our results reveal that LLMs offer minimal advantages for these core time series tasks and may even distort the temporal structure of the data.
arXiv Detail & Related papers (2024-10-16T07:47:31Z) - Towards Time Series Reasoning with LLMs [0.4369058206183195]
We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance.
We show that our model learns a latent representation that reflects specific time-series features, as well as outperforming GPT-4o on a set of zero-shot reasoning tasks.
arXiv Detail & Related papers (2024-09-17T17:23:44Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.
Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.
Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
We introduce three large-scale time series forecasting datasets from the cloud operations domain.
We show it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size.
Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method.
arXiv Detail & Related papers (2023-10-08T08:09:51Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.