Towards Time Series Reasoning with LLMs
- URL: http://arxiv.org/abs/2409.11376v1
- Date: Tue, 17 Sep 2024 17:23:44 GMT
- Title: Towards Time Series Reasoning with LLMs
- Authors: Winnie Chow, Lauren Gardiner, Haraldur T. Hallgrímsson, Maxwell A. Xu, Shirley You Ren,
- Abstract summary: We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance.
We show that our model learns a latent representation that reflects specific time-series features, as well as outperforming GPT-4o on a set of zero-shot reasoning tasks.
- Score: 0.4369058206183195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-modal large language models (MLLMs) have enabled numerous advances in understanding and reasoning in domains like vision, but we have not yet seen this broad success for time-series. Although prior works on time-series MLLMs have shown promising performance in time-series forecasting, very few works show how an LLM could be used for time-series reasoning in natural language. We propose a novel multi-modal time-series LLM approach that learns generalizable information across various domains with powerful zero-shot performance. First, we train a lightweight time-series encoder on top of an LLM to directly extract time-series information. Then, we fine-tune our model with chain-of-thought augmented time-series tasks to encourage the model to generate reasoning paths. We show that our model learns a latent representation that reflects specific time-series features (e.g. slope, frequency), as well as outperforming GPT-4o on a set of zero-shot reasoning tasks on a variety of domains.
Related papers
- LLM-PS: Empowering Large Language Models for Time Series Forecasting with Temporal Patterns and Semantics [56.99021951927683]
Time Series Forecasting (TSF) is critical in many real-world domains like financial planning and health monitoring.
Existing Large Language Models (LLMs) usually perform suboptimally because they neglect the inherent characteristics of time series data.
We propose LLM-PS to empower the LLM for TSF by learning the fundamental textitPatterns and meaningful textitSemantics from time series data.
arXiv Detail & Related papers (2025-03-12T11:45:11Z) - Can Multimodal LLMs Perform Time Series Anomaly Detection? [55.534264764673296]
We propose VisualTimeAnomaly benchmark to evaluate MLLMs in time series anomaly detection (TSAD)
Our approach transforms time series numerical data into the image format and feed these images into various MLLMs.
In total, VisualTimeAnomaly contains 12.4k time series images spanning 3 scenarios and 3 anomaly granularities with 9 anomaly types across 8 MLLMs.
arXiv Detail & Related papers (2025-02-25T03:37:43Z) - Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.
We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - Large Language Models are Few-shot Multivariate Time Series Classifiers [23.045734479292356]
Large Language Models (LLMs) have been extensively applied in time series analysis.
Yet, their utility in the few-shot classification (i.e., a crucial training scenario) is underexplored.
We aim to leverage the extensive pre-trained knowledge in LLMs to overcome the data scarcity problem.
arXiv Detail & Related papers (2025-01-30T03:59:59Z) - Are Language Models Actually Useful for Time Series Forecasting? [21.378728572776897]
We find that removing the LLM component or replacing it with a basic attention layer does not degrade forecasting performance.
We also find that despite their significant computational cost, pretrained LLMs do no better than models trained from scratch.
We explore time series encoders and find that patching and attention structures perform similarly to LLM-based forecasters.
arXiv Detail & Related papers (2024-06-22T03:33:38Z) - Time Series Forecasting with LLMs: Understanding and Enhancing Model Capabilities [46.02234423159257]
Large language models (LLMs) have been applied in many fields and have developed rapidly in recent years.
Recent works treat large language models as emphzero-shot time series reasoners without further fine-tuning.
Our study shows that LLMs perform well in predicting time series with clear patterns and trends, but face challenges with datasets lacking periodicity.
arXiv Detail & Related papers (2024-02-16T17:15:28Z) - Empowering Time Series Analysis with Large Language Models: A Survey [24.202539098675953]
We provide a systematic overview of methods that leverage large language models for time series analysis.
Specifically, we first state the challenges and motivations of applying language models in the context of time series.
Next, we categorize existing methods into different groups (i.e., direct query, tokenization, prompt design, fine-tune, and model integration) and highlight the key ideas within each group.
arXiv Detail & Related papers (2024-02-05T16:46:35Z) - Position: What Can Large Language Models Tell Us about Time Series Analysis [69.70906014827547]
We argue that current large language models (LLMs) have the potential to revolutionize time series analysis.
Such advancement could unlock a wide range of possibilities, including time series modality switching and question answering.
arXiv Detail & Related papers (2024-02-05T04:17:49Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimes projects time series into the embedding space of language tokens and autoregressively generates future predictions with arbitrary lengths.
We formulate time series as prompts, extending the context for prediction beyond the lookback window.
AutoTimes achieves state-of-the-art with 0.1% trainable parameters and over $5times$ training/inference speedup.
arXiv Detail & Related papers (2024-02-04T06:59:21Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
By encoding time series as a string of numerical digits, we can frame time series forecasting as next-token prediction in text.
We find that large language models (LLMs) such as GPT-3 and LLaMA-2 can surprisingly zero-shot extrapolate time series at a level comparable to or exceeding the performance of purpose-built time series models trained on the downstream tasks.
arXiv Detail & Related papers (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
Time series forecasting holds significant importance in many real-world dynamic systems.
We present Time-LLM, a reprogramming framework to repurpose large language models for time series forecasting.
Time-LLM is a powerful time series learner that outperforms state-of-the-art, specialized forecasting models.
arXiv Detail & Related papers (2023-10-03T01:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.