A note on MDS Property of Circulant Matrices
- URL: http://arxiv.org/abs/2406.16973v1
- Date: Sat, 22 Jun 2024 16:00:00 GMT
- Title: A note on MDS Property of Circulant Matrices
- Authors: Tapas Chatterjee, Ayantika Laha,
- Abstract summary: In $2014$, Gupta and Ray proved that the circulant involutory matrices over the finite field $mathbbF_2m$ can not be maximum distance separable (MDS)
This article delves into circulant matrices possessing these characteristics over the finite field $mathbbF_2m$.
- Score: 3.069335774032178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In $2014$, Gupta and Ray proved that the circulant involutory matrices over the finite field $\mathbb{F}_{2^m}$ can not be maximum distance separable (MDS). This non-existence also extends to circulant orthogonal matrices of order $2^d \times 2^d$ over finite fields of characteristic $2$. These findings inspired many authors to generalize the circulant property for constructing lightweight MDS matrices with practical applications in mind. Recently, in $2022,$ Chatterjee and Laha initiated a study of circulant matrices by considering semi-involutory and semi-orthogonal properties. Expanding on their work, this article delves into circulant matrices possessing these characteristics over the finite field $\mathbb{F}_{2^m}.$ Notably, we establish a correlation between the trace of associated diagonal matrices and the MDS property of the matrix. We prove that this correlation holds true for even order semi-orthogonal matrices and semi-involutory matrices of all orders. Additionally, we provide examples that for circulant, semi-orthogonal matrices of odd orders over a finite field with characteristic $2$, the trace of associated diagonal matrices may possess non-zero values.
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations.
arXiv Detail & Related papers (2024-07-15T07:11:44Z) - On MDS Property of g-Circulant Matrices [3.069335774032178]
We first discuss $g$-circulant matrices with involutory and MDS properties.
We then delve into $g$-circulant semi-involutory and semi-orthogonal matrices with entries from finite fields.
arXiv Detail & Related papers (2024-06-22T15:18:31Z) - A note on cyclic non-MDS matrices [3.069335774032178]
In $1998,$ Daemen it et al. introduced a circulant Maximum Distance Separable (MDS) matrix in the diffusion layer of the Rijndael block cipher.
This block cipher is now universally acclaimed as the AES block cipher.
In $2016,$ Liu and Sim introduced cyclic matrices by modifying the permutation of circulant matrices.
arXiv Detail & Related papers (2024-06-20T06:05:16Z) - A Characterization of Semi-Involutory MDS Matrices [3.069335774032178]
In symmetric cryptography, maximum distance separable (MDS) matrices with computationally simple inverses have wide applications.
Many block ciphers like AES, SQUARE, SHARK, and hash functions like PHOTON use an MDS matrix in the diffusion layer.
arXiv Detail & Related papers (2024-06-18T17:57:46Z) - On the Counting of Involutory MDS Matrices [0.0]
This paper enumerates Hadamard MDS and involutory Hadamard MDS matrices of order $4$ within the field $mathbbF_2r$.
It also derives the count of Hadamard-MDS (NMDS) and involutory Hadamard NMDS matrices, each with exactly one zero in each row, of order $4$ over $mathbbF_2r$.
arXiv Detail & Related papers (2023-09-29T18:57:00Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Non-PSD Matrix Sketching with Applications to Regression and
Optimization [56.730993511802865]
We present dimensionality reduction methods for non-PSD and square-roots" matrices.
We show how these techniques can be used for multiple downstream tasks.
arXiv Detail & Related papers (2021-06-16T04:07:48Z) - Algebraic and geometric structures inside the Birkhoff polytope [0.0]
Birkhoff polytope $mathcalB_d$ consists of all bistochastic matrices of order $d$.
We prove that $mathcalL_d$ and $mathcalF_d$ are star-shaped with respect to the flat matrix.
arXiv Detail & Related papers (2021-01-27T09:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.