Cramer-Rao Bounds for Laplacian Matrix Estimation
- URL: http://arxiv.org/abs/2504.04576v1
- Date: Sun, 06 Apr 2025 18:28:31 GMT
- Title: Cramer-Rao Bounds for Laplacian Matrix Estimation
- Authors: Morad Halihal, Tirza Routtenberg, H. Vincent Poor,
- Abstract summary: We derive closed-form matrix expressions for the Cramer-Rao Bound (CRB) specifically tailored to Laplacian matrix estimation.<n>We demonstrate the use of CRBs in three representative applications: (i) topology identification in power systems, (ii) graph filter identification in diffused models, and (iii) precision matrix estimation in Gaussian Markov random fields under Laplacian constraints.
- Score: 56.1214184671173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we analyze the performance of the estimation of Laplacian matrices under general observation models. Laplacian matrix estimation involves structural constraints, including symmetry and null-space properties, along with matrix sparsity. By exploiting a linear reparametrization that enforces the structural constraints, we derive closed-form matrix expressions for the Cramer-Rao Bound (CRB) specifically tailored to Laplacian matrix estimation. We further extend the derivation to the sparsity-constrained case, introducing two oracle CRBs that incorporate prior information of the support set, i.e. the locations of the nonzero entries in the Laplacian matrix. We examine the properties and order relations between the bounds, and provide the associated Slepian-Bangs formula for the Gaussian case. We demonstrate the use of the new CRBs in three representative applications: (i) topology identification in power systems, (ii) graph filter identification in diffused models, and (iii) precision matrix estimation in Gaussian Markov random fields under Laplacian constraints. The CRBs are evaluated and compared with the mean-squared-errors (MSEs) of the constrained maximum likelihood estimator (CMLE), which integrates both equality and inequality constraints along with sparsity constraints, and of the oracle CMLE, which knows the locations of the nonzero entries of the Laplacian matrix. We perform this analysis for the applications of power system topology identification and graphical LASSO, and demonstrate that the MSEs of the estimators converge to the CRB and oracle CRB, given a sufficient number of measurements.
Related papers
- Symmetrizing the Constraints -- Density Matrix Renormalization Group for Constrained Lattice Models [0.40964539027092917]
We develop a density matrix renormalization group (DMRG) algorithm for constrained quantum lattice models.
Such an implementation allows us to investigate a quantum dimer model in DMRG for any lattice geometry wrapped around a cylinder with substantial circumference.
arXiv Detail & Related papers (2025-04-05T03:05:11Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
We present a novel approach that combines the eigenanalysis of a covariance matrix evaluated on a training set with a Hessian matrix evaluated on a deep learning model.
Our method captures intricate patterns and relationships, enhancing classification performance.
arXiv Detail & Related papers (2024-02-14T16:10:42Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model [13.082805815235975]
We introduce a novel framework called Mode-wise Principal Subspace Pursuit (MOP-UP) to extract hidden variations in both the row and column dimensions for matrix data.
The effectiveness and practical merits of the proposed framework are demonstrated through experiments on both simulated and real datasets.
arXiv Detail & Related papers (2023-07-02T13:59:47Z) - Adaptive Estimation of Graphical Models under Total Positivity [13.47131471222723]
We consider the problem of estimating (diagonally dominant) M-matrices as precision matrices in Gaussian graphical models.
We propose an adaptive multiple-stage estimation method that refines the estimate.
We develop a unified framework based on the gradient projection method to solve the regularized problem.
arXiv Detail & Related papers (2022-10-27T14:21:27Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.