MD tree: a model-diagnostic tree grown on loss landscape
- URL: http://arxiv.org/abs/2406.16988v1
- Date: Mon, 24 Jun 2024 04:31:17 GMT
- Title: MD tree: a model-diagnostic tree grown on loss landscape
- Authors: Yefan Zhou, Jianlong Chen, Qinxue Cao, Konstantin Schürholt, Yaoqing Yang,
- Abstract summary: Given a pre-trained neural network (NN), the goal is to predict the source of failure from a set of failure modes.
The conventional diagnosis approach uses training and validation errors to determine whether the model is underfitting or overfitting.
We show that rich information about NN performance is encoded in the optimization loss landscape, which provides more actionable insights than validation-based measurements.
- Score: 6.633201258809686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers "model diagnosis", which we formulate as a classification problem. Given a pre-trained neural network (NN), the goal is to predict the source of failure from a set of failure modes (such as a wrong hyperparameter, inadequate model size, and insufficient data) without knowing the training configuration of the pre-trained NN. The conventional diagnosis approach uses training and validation errors to determine whether the model is underfitting or overfitting. However, we show that rich information about NN performance is encoded in the optimization loss landscape, which provides more actionable insights than validation-based measurements. Therefore, we propose a diagnosis method called MD tree based on loss landscape metrics and experimentally demonstrate its advantage over classical validation-based approaches. We verify the effectiveness of MD tree in multiple practical scenarios: (1) use several models trained on one dataset to diagnose a model trained on another dataset, essentially a few-shot dataset transfer problem; (2) use small models (or models trained with small data) to diagnose big models (or models trained with big data), essentially a scale transfer problem. In a dataset transfer task, MD tree achieves an accuracy of 87.7%, outperforming validation-based approaches by 14.88%. Our code is available at https://github.com/YefanZhou/ModelDiagnosis.
Related papers
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Estimating Uncertainty with Implicit Quantile Network [0.0]
Uncertainty quantification is an important part of many performance critical applications.
This paper provides a simple alternative to existing approaches such as ensemble learning and bayesian neural networks.
arXiv Detail & Related papers (2024-08-26T13:33:14Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - An Effective Data-Driven Approach for Localizing Deep Learning Faults [20.33411443073181]
We propose a novel data-driven approach that leverages model features to learn problem patterns.
Our methodology automatically links bug symptoms to their root causes, without the need for manually crafted mappings.
Our results demonstrate that our technique can effectively detect and diagnose different bug types.
arXiv Detail & Related papers (2023-07-18T03:28:39Z) - Robust self-healing prediction model for high dimensional data [0.685316573653194]
This work proposes a robust self healing (RSH) hybrid prediction model.
It functions by using the data in its entirety by removing errors and inconsistencies from it rather than discarding any data.
The proposed method is compared with some of the existing high performing models and the results are analyzed.
arXiv Detail & Related papers (2022-10-04T17:55:50Z) - Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models [0.0]
Misleading or unnecessary data can have out-sized impacts on the health or accuracy of Machine Learning (ML) models.
We present a sequential selection method that identifies critically important information within a dataset.
We find these instabilities are a result of the complexity of the underlying map and linked to extreme events and heavy tails.
arXiv Detail & Related papers (2022-08-27T19:43:53Z) - PCA-RF: An Efficient Parkinson's Disease Prediction Model based on
Random Forest Classification [3.6704226968275258]
In this paper, a disease prediction approach is proposed that implements a random forest classifier on Parkinson's disease.
We compare the accuracy of this model with the Principal Component Analysis (PCA) applied Artificial Neural Network (ANN) model and captured a visible difference.
The model secured a significant accuracy of up to 90%.
arXiv Detail & Related papers (2022-03-21T18:59:08Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.