Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection
- URL: http://arxiv.org/abs/2406.16999v1
- Date: Mon, 24 Jun 2024 12:25:04 GMT
- Title: Identifying Easy Instances to Improve Efficiency of ML Pipelines for Algorithm-Selection
- Authors: Quentin Renau, Emma Hart,
- Abstract summary: We propose a method for identifying easy instances which can be solved quickly using a generalist solver without any need for algorithm-selection.
This saves computational budget associated with feature-computation which can then be used elsewhere in an AS pipeline.
- Score: 0.20718016474717196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithm-selection (AS) methods are essential in order to obtain the best performance from a portfolio of solvers over large sets of instances. However, many AS methods rely on an analysis phase, e.g. where features are computed by sampling solutions and used as input in a machine-learning model. For AS to be efficient, it is therefore important that this analysis phase is not computationally expensive. We propose a method for identifying easy instances which can be solved quickly using a generalist solver without any need for algorithm-selection. This saves computational budget associated with feature-computation which can then be used elsewhere in an AS pipeline, e.g., enabling additional function evaluations on hard problems. Experiments on the BBOB dataset in two settings (batch and streaming) show that identifying easy instances results in substantial savings in function evaluations. Re-allocating the saved budget to hard problems provides gains in performance compared to both the virtual best solver (VBS) computed with the original budget, the single best solver (SBS) and a trained algorithm-selector.
Related papers
- Scaling LLM Inference with Optimized Sample Compute Allocation [56.524278187351925]
We propose OSCA, an algorithm to find an optimal mix of different inference configurations.
Our experiments show that with our learned mixed allocation, we can achieve accuracy better than the best single configuration.
OSCA is also shown to be effective in agentic beyond single-turn tasks, achieving a better accuracy on SWE-Bench with 3x less compute than the default configuration.
arXiv Detail & Related papers (2024-10-29T19:17:55Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems [0.755972004983746]
We propose a feature extraction method that describes the trajectories of optimization algorithms using simple statistics.
We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running.
arXiv Detail & Related papers (2023-06-08T06:57:07Z) - Global and Preference-based Optimization with Mixed Variables using Piecewise Affine Surrogates [0.6083861980670925]
This paper proposes a novel surrogate-based global optimization algorithm to solve linearly constrained mixed-variable problems.
We assume the objective function is black-box and expensive-to-evaluate, while the linear constraints are quantifiable unrelaxable a priori known.
We introduce two types of exploration functions to efficiently search the feasible domain via mixed-integer linear programming solvers.
arXiv Detail & Related papers (2023-02-09T15:04:35Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
In deep active learning, it is important to choose multiple examples to markup at each step.
Existing solutions to this problem, such as BatchBALD, have significant limitations in selecting a large number of examples.
We present the Large BatchBALD algorithm, which aims to achieve comparable quality while being more computationally efficient.
arXiv Detail & Related papers (2023-01-13T11:45:17Z) - A machine learning based algorithm selection method to solve the minimum
cost flow problem [0.8399688944263843]
We train several machine learning classifiers to predict the fastest among a given set of solvers.
It is shown that tree-based models appear to adapt and exploit the relevant structures of the minimum-cost flow problem.
arXiv Detail & Related papers (2022-10-03T16:06:24Z) - OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning
Algorithms [1.6114012813668934]
OptABC is proposed to help ABC algorithm in faster convergence toward a near-optimum solution.
OptABC integrates artificial bee colony algorithm, K-Means clustering, greedy algorithm, and opposition-based learning strategy.
Experimental results demonstrate the effectiveness of OptABC compared to existing approaches in the literature.
arXiv Detail & Related papers (2021-12-15T22:33:39Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Simple and Scalable Parallelized Bayesian Optimization [2.512827436728378]
We propose a simple and scalable BO method for asynchronous parallel settings.
Experiments are carried out with a benchmark function and hyperparameter optimization of multi-layer perceptrons.
arXiv Detail & Related papers (2020-06-24T10:25:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.