DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems
- URL: http://arxiv.org/abs/2306.05438v1
- Date: Thu, 8 Jun 2023 06:57:07 GMT
- Title: DynamoRep: Trajectory-Based Population Dynamics for Classification of
Black-box Optimization Problems
- Authors: Gjorgjina Cenikj, Ga\v{s}per Petelin, Carola Doerr, Peter Koro\v{s}ec,
Tome Eftimov
- Abstract summary: We propose a feature extraction method that describes the trajectories of optimization algorithms using simple statistics.
We demonstrate that the proposed DynamoRep features capture enough information to identify the problem class on which the optimization algorithm is running.
- Score: 0.755972004983746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of machine learning (ML) models to the analysis of
optimization algorithms requires the representation of optimization problems
using numerical features. These features can be used as input for ML models
that are trained to select or to configure a suitable algorithm for the problem
at hand. Since in pure black-box optimization information about the problem
instance can only be obtained through function evaluation, a common approach is
to dedicate some function evaluations for feature extraction, e.g., using
random sampling. This approach has two key downsides: (1) It reduces the budget
left for the actual optimization phase, and (2) it neglects valuable
information that could be obtained from a problem-solver interaction.
In this paper, we propose a feature extraction method that describes the
trajectories of optimization algorithms using simple descriptive statistics. We
evaluate the generated features for the task of classifying problem classes
from the Black Box Optimization Benchmarking (BBOB) suite. We demonstrate that
the proposed DynamoRep features capture enough information to identify the
problem class on which the optimization algorithm is running, achieving a mean
classification accuracy of 95% across all experiments.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Experience in Engineering Complex Systems: Active Preference Learning
with Multiple Outcomes and Certainty Levels [1.5257326975704795]
Black-box optimization refers to the problem whose objective function and/or constraint sets are either unknown, inaccessible, or non-existent.
The algorithm so-called Active Preference Learning has been developed to exploit this specific information.
Our approach aims to extend the algorithm in such a way that can exploit further information effectively.
arXiv Detail & Related papers (2023-02-27T15:55:37Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
Per-instance algorithm selection seeks to recommend, for a given problem instance, one or several suitable algorithms.
We propose an online algorithm selection scheme which we coin per-run algorithm selection.
We show that our approach outperforms static per-instance algorithm selection.
arXiv Detail & Related papers (2022-04-20T14:30:42Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - Meta Learning Black-Box Population-Based Optimizers [0.0]
We propose the use of meta-learning to infer population-based blackbox generalizations.
We show that the meta-loss function encourages a learned algorithm to alter its search behavior so that it can easily fit into a new context.
arXiv Detail & Related papers (2021-03-05T08:13:25Z) - Towards Feature-Based Performance Regression Using Trajectory Data [0.9281671380673306]
Black-box optimization is a very active area of research, with many new algorithms being developed every year.
The variety of algorithms poses a meta-problem: which algorithm to choose for a given problem at hand?
Past research has shown that per-instance algorithm selection based on exploratory landscape analysis can be an efficient mean to tackle this meta-problem.
arXiv Detail & Related papers (2021-02-10T10:19:13Z) - Landscape-Aware Fixed-Budget Performance Regression and Algorithm
Selection for Modular CMA-ES Variants [1.0965065178451106]
We show that it is possible to achieve high-quality performance predictions with off-the-shelf supervised learning approaches.
We test this approach on a portfolio of very similar algorithms, which we choose from the family of modular CMA-ES algorithms.
arXiv Detail & Related papers (2020-06-17T13:34:57Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.