Enhancing Scientific Figure Captioning Through Cross-modal Learning
- URL: http://arxiv.org/abs/2406.17047v1
- Date: Mon, 24 Jun 2024 18:08:19 GMT
- Title: Enhancing Scientific Figure Captioning Through Cross-modal Learning
- Authors: Mateo Alejandro Rojas, Rafael Carranza,
- Abstract summary: The volume and diversity of scientific research data have surged, leading to an increase in the number and variety of charts.
This paper presents a novel approach to scientific chart title generation, demonstrating its effectiveness in improving the clarity and accessibility of research data.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scientific charts are essential tools for effectively communicating research findings, serving as a vital medium for conveying information and revealing data patterns. With the rapid advancement of science and technology, coupled with the advent of the big data era, the volume and diversity of scientific research data have surged, leading to an increase in the number and variety of charts. This trend presents new challenges for researchers, particularly in efficiently and accurately generating appropriate titles for these charts to better convey their information and results. Automatically generated chart titles can enhance information retrieval systems by providing precise data for detailed chart classification. As research in image captioning and text summarization matures, the automatic generation of scientific chart titles has gained significant attention. By leveraging natural language processing, machine learning, and multimodal techniques, it is possible to automatically extract key information from charts and generate accurate, concise titles that better serve the needs of researchers. This paper presents a novel approach to scientific chart title generation, demonstrating its effectiveness in improving the clarity and accessibility of research data.
Related papers
- SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
Data visualization in the form of charts plays a pivotal role in data analysis, offering critical insights and aiding in informed decision-making.
Large foundation models, such as large language models, have revolutionized various natural language processing tasks.
This survey paper serves as a comprehensive resource for researchers and practitioners in the fields of natural language processing, computer vision, and data analysis.
arXiv Detail & Related papers (2024-03-18T17:57:09Z) - A Survey on Data Selection for Language Models [148.300726396877]
Data selection methods aim to determine which data points to include in a training dataset.
Deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive.
Few organizations have the resources for extensive data selection research.
arXiv Detail & Related papers (2024-02-26T18:54:35Z) - A Survey on Figure Classification Techniques in Scientific Documents [15.436456941551329]
We systematically categorize figures into five classes - tables, photos, diagrams, maps, and plots.
We identify the current research gaps and provide possible directions for further research on figure classification.
arXiv Detail & Related papers (2023-07-09T10:55:11Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
We focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.
Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.
Motivated by this, we propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available.
arXiv Detail & Related papers (2022-12-08T11:53:12Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
We use the citation graph of referential links between citing and cited papers.
We observe a sizable improvement in end-to-end information extraction over the state-of-the-art.
arXiv Detail & Related papers (2021-06-03T03:00:12Z) - Self-Supervised Learning for Visual Summary Identification in Scientific
Publications [21.26121265868308]
We create a new benchmark dataset for selecting figures to serve as visual summaries of publications based on their abstracts.
We develop a self-supervised learning approach, based on matching of inline references to figures with figure captions.
Experiments in both biomedical and computer science domains show that our model is able to outperform the state of the art.
arXiv Detail & Related papers (2020-12-21T09:48:58Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Visual Exploration and Knowledge Discovery from Biomedical Dark Data [0.0]
We employ a natural language processing based pipeline to discover knowledge out of the biomedical dark data.
We aim to proffer a potential solution to overcome the problem of analyzing overwhelming amounts of information.
arXiv Detail & Related papers (2020-09-28T04:27:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.