CS-PaperSum: A Large-Scale Dataset of AI-Generated Summaries for Scientific Papers
- URL: http://arxiv.org/abs/2502.20582v1
- Date: Thu, 27 Feb 2025 22:48:35 GMT
- Title: CS-PaperSum: A Large-Scale Dataset of AI-Generated Summaries for Scientific Papers
- Authors: Javin Liu, Aryan Vats, Zihao He,
- Abstract summary: CS-PaperSum is a large-scale dataset of 91,919 papers from 31 top-tier computer science conferences.<n>Our dataset enables automated literature analysis, research trend forecasting, and AI-driven scientific discovery.
- Score: 3.929864777332447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of scientific literature in computer science presents challenges in tracking research trends and extracting key insights. Existing datasets provide metadata but lack structured summaries that capture core contributions and methodologies. We introduce CS-PaperSum, a large-scale dataset of 91,919 papers from 31 top-tier computer science conferences, enriched with AI-generated structured summaries using ChatGPT. To assess summary quality, we conduct embedding alignment analysis and keyword overlap analysis, demonstrating strong preservation of key concepts. We further present a case study on AI research trends, highlighting shifts in methodologies and interdisciplinary crossovers, including the rise of self-supervised learning, retrieval-augmented generation, and multimodal AI. Our dataset enables automated literature analysis, research trend forecasting, and AI-driven scientific discovery, providing a valuable resource for researchers, policymakers, and scientific information retrieval systems.
Related papers
- A Retrieval-Augmented Generation Framework for Academic Literature Navigation in Data Science [2.5398014196797614]
This paper presents an enhanced Retrieval-Augmented Generation application, an artificial intelligence (AI)-based system designed to assist data scientists in accessing precise and contextually relevant academic resources.<n>The AI-powered application integrates advanced techniques, including the GeneRation Of BIbliographic Data (GROBID) technique for extracting information.<n>A comprehensive evaluation using the Retrieval-Augmented Generation Assessment System (RAGAS) framework demonstrates substantial improvements in key metrics.
arXiv Detail & Related papers (2024-12-19T21:14:54Z) - Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
Bibliometric analysis is essential for understanding research trends, scope, and impact in urban science.
Traditional methods, relying on keyword searches, often fail to uncover valuable insights not explicitly stated in article titles or keywords.
We leverage Generative AI models, specifically transformers and Retrieval-Augmented Generation (RAG), to automate and enhance bibliometric analysis.
arXiv Detail & Related papers (2024-10-08T05:13:27Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
We introduce a modular, flexible, yet user-friendly software framework specifically developed to streamline computational-driven data exploration for human behavior analysis.
Our primary objective is to democratize access to advanced computational methodologies, thereby enabling researchers across disciplines to engage in detailed behavioral analysis without the need for extensive technical proficiency.
arXiv Detail & Related papers (2024-07-18T11:28:52Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
We present a comprehensive dataset compiled from Nature Communications articles covering 72 scientific fields.<n>We evaluated 19 proprietary and open-source models on two benchmark tasks, figure captioning and multiple-choice, and conducted human expert annotation.<n>Fine-tuning Qwen2-VL-7B with our task-specific data achieved better performance than GPT-4o and even human experts in multiple-choice evaluations.
arXiv Detail & Related papers (2024-07-06T00:40:53Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
This position paper proposes a data-centric viewpoint of AI research, focusing on large language models (LLMs)
We make the key observation that data is instrumental in the developmental (e.g., pretraining and fine-tuning) and inferential stages (e.g., in-context learning) of LLMs.
We identify four specific scenarios centered around data, covering data-centric benchmarks and data curation, data attribution, knowledge transfer, and inference contextualization.
arXiv Detail & Related papers (2024-06-20T16:34:07Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Onologies are widely used for representing domain knowledge and meta data.<n> logical reasoning that can directly support are quite limited in learning, approximation and prediction.<n>One straightforward solution is to integrate statistical analysis and machine learning.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature [80.49349719239584]
We present SciRIFF (Scientific Resource for Instruction-Following and Finetuning), a dataset of 137K instruction-following demonstrations for 54 tasks.
SciRIFF is the first dataset focused on extracting and synthesizing information from research literature across a wide range of scientific fields.
arXiv Detail & Related papers (2024-06-10T21:22:08Z) - Artificial intelligence to automate the systematic review of scientific
literature [0.0]
We present a survey of AI techniques proposed in the last 15 years to help researchers conduct systematic analyses of scientific literature.
We describe the tasks currently supported, the types of algorithms applied, and available tools proposed in 34 primary studies.
arXiv Detail & Related papers (2024-01-13T19:12:49Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
We identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature.
We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.
arXiv Detail & Related papers (2022-07-18T11:38:32Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.