Horseshoe-type Priors for Independent Component Estimation
- URL: http://arxiv.org/abs/2406.17058v2
- Date: Sun, 1 Sep 2024 23:57:03 GMT
- Title: Horseshoe-type Priors for Independent Component Estimation
- Authors: Jyotishka Datta, Nicholas G. Polson,
- Abstract summary: Independent Component Estimation (ICE) has many applications in modern day machine learning.
Horseshoe-type priors are used to provide scalable algorithms.
We show how to implement conditional posteriors and envelope-based methods for optimization.
- Score: 0.4987670632802289
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Independent Component Estimation (ICE) has many applications in modern day machine learning as a feature engineering extraction method. Horseshoe-type priors are used to provide scalable algorithms that enables both point estimates via expectation-maximization (EM) and full posterior sampling via Markov Chain Monte Carlo (MCMC) algorithms. Our methodology also applies to flow-based methods for nonlinear feature extraction and deep learning. We also discuss how to implement conditional posteriors and envelope-based methods for optimization. Through this hierarchy representation, we unify a number of hitherto disparate estimation procedures. We illustrate our methodology and algorithms on a numerical example. Finally, we conclude with directions for future research.
Related papers
- Unraveling Rodeo Algorithm Through the Zeeman Model [0.0]
We unravel the Rodeo Algorithm to determine the eigenstates and eigenvalues spectrum for a general Hamiltonian considering arbitrary initial states.
We exploit Pennylane and Qiskit platforms resources to analyze scenarios where the Hamiltonians are described by the Zeeman model for one and two spins.
arXiv Detail & Related papers (2024-07-16T01:29:25Z) - Iterative Methods for Full-Scale Gaussian Process Approximations for Large Spatial Data [9.913418444556486]
We show how iterative methods can be used to reduce the computational costs for calculating likelihoods, gradients, and predictive distributions with FSAs.
We also present a novel, accurate, and fast way to calculate predictive variances relying on estimations and iterative methods.
All methods are implemented in a free C++ software library with high-level Python and R packages.
arXiv Detail & Related papers (2024-05-23T12:25:22Z) - PBES: PCA Based Exemplar Sampling Algorithm for Continual Learning [0.0]
We propose a novel exemplar selection approach based on Principal Component Analysis (PCA) and median sampling, and a neural network training regime in the setting of class-incremental learning.
This approach avoids the pitfalls due to outliers in the data and is both simple to implement and use across various incremental machine learning models.
arXiv Detail & Related papers (2023-12-14T21:27:38Z) - Generalizing Backpropagation for Gradient-Based Interpretability [103.2998254573497]
We show that the gradient of a model is a special case of a more general formulation using semirings.
This observation allows us to generalize the backpropagation algorithm to efficiently compute other interpretable statistics.
arXiv Detail & Related papers (2023-07-06T15:19:53Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
We consider the problem of learning the optimal policy for infinite-horizon Markov decision processes (MDPs)
Some variant of Mirror Descent is proposed for convex programming problems with Lipschitz-continuous functionals.
We analyze this algorithm in a general case and obtain an estimate of the convergence rate that does not accumulate errors during the operation of the method.
arXiv Detail & Related papers (2021-02-27T19:28:39Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
We present a robust estimator for fitting multiple parametric models of the same form to noisy measurements.
In contrast to previous works, which resorted to hand-crafted search strategies for multiple model detection, we learn the search strategy from data.
For self-supervised learning of the search, we evaluate the proposed algorithm on multi-homography estimation and demonstrate an accuracy that is superior to state-of-the-art methods.
arXiv Detail & Related papers (2020-01-08T17:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.