Unraveling Rodeo Algorithm Through the Zeeman Model
- URL: http://arxiv.org/abs/2407.11301v1
- Date: Tue, 16 Jul 2024 01:29:25 GMT
- Title: Unraveling Rodeo Algorithm Through the Zeeman Model
- Authors: Raphael Fortes Infante Gomes, Julio Cesar Siqueira Rocha, Wallon Anderson Tadaiesky Nogueira, Rodrigo Alves Dias,
- Abstract summary: We unravel the Rodeo Algorithm to determine the eigenstates and eigenvalues spectrum for a general Hamiltonian considering arbitrary initial states.
We exploit Pennylane and Qiskit platforms resources to analyze scenarios where the Hamiltonians are described by the Zeeman model for one and two spins.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We unravel the Rodeo Algorithm to determine the eigenstates and eigenvalues spectrum for a general Hamiltonian considering arbitrary initial states. By presenting a novel methodology, we detail the original method and show how to define all properties without having prior knowledge regarding the eigenstates. To this end, we exploit Pennylane and Qiskit platforms resources to analyze scenarios where the Hamiltonians are described by the Zeeman model for one and two spins. We also introduce strategies and techniques to improve the algorithm's performance by adjusting its intrinsic parameters and reducing the fluctuations inherent to data distribution. First, we explore the dynamics of a single qubit on Xanadu simulators to set the parameters that optimize the method performance and select the best strategies to execute the algorithm. On the sequence, we extend the methodology for bipartite systems to discuss how the algorithm works when degeneracy and entanglement are taken into account. Finally, we compare the predictions with the results obtained on a real superconducting device provided by the IBM Q Experience program, establishing the conditions to increase the protocol efficiency for multi-qubit systems.
Related papers
- Markov Decision Processes with Noisy State Observation [0.0]
This paper addresses the challenge of a particular class of noisy state observations in Markov Decision Processes (MDPs)
We focus on modeling this uncertainty through a confusion matrix that captures the probabilities of misidentifying the true state.
We propose two novel algorithmic approaches to estimate the inherent measurement noise.
arXiv Detail & Related papers (2023-12-13T21:50:38Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Adaptive First- and Second-Order Algorithms for Large-Scale Machine
Learning [3.0204520109309843]
We consider first- and second-order techniques to address continuous optimization problems in machine learning.
In the first-order case, we propose a framework of transition from semi-deterministic to quadratic regularization methods.
In the second-order case, we propose a novel first-order algorithm with adaptive sampling and adaptive step size.
arXiv Detail & Related papers (2021-11-29T18:10:00Z) - Iterative Methods for Private Synthetic Data: Unifying Framework and New
Methods [18.317488965846636]
We study private synthetic data generation for query release.
The goal is to construct a sanitized version of a sensitive dataset subject to differential privacy.
Under this framework, we propose two new methods.
arXiv Detail & Related papers (2021-06-14T04:19:35Z) - Logistic Q-Learning [87.00813469969167]
We propose a new reinforcement learning algorithm derived from a regularized linear-programming formulation of optimal control in MDPs.
The main feature of our algorithm is a convex loss function for policy evaluation that serves as a theoretically sound alternative to the widely used squared Bellman error.
arXiv Detail & Related papers (2020-10-21T17:14:31Z) - On the implementation of a global optimization method for mixed-variable
problems [0.30458514384586394]
The algorithm is based on the radial basis function of Gutmann and the metric response surface method of Regis and Shoemaker.
We propose several modifications aimed at generalizing and improving these two algorithms.
arXiv Detail & Related papers (2020-09-04T13:36:56Z) - Kernel Taylor-Based Value Function Approximation for Continuous-State
Markov Decision Processes [5.894659354028797]
We propose a principled kernel-based policy iteration algorithm to solve the continuous-state Markov Decision Processes (MDPs)
We have validated the proposed method through extensive simulations in both simplified and realistic planning scenarios.
arXiv Detail & Related papers (2020-06-03T01:48:43Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
We study the problem of efficient exploration in order to learn an accurate model of an environment, modeled as a Markov decision process (MDP)
We show that our Markov-based algorithm outperforms both our original algorithm and the maximum entropy algorithm in the small sample regime.
arXiv Detail & Related papers (2020-03-06T16:17:24Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.