Tolerance of Reinforcement Learning Controllers against Deviations in Cyber Physical Systems
- URL: http://arxiv.org/abs/2406.17066v1
- Date: Mon, 24 Jun 2024 18:33:45 GMT
- Title: Tolerance of Reinforcement Learning Controllers against Deviations in Cyber Physical Systems
- Authors: Changjian Zhang, Parv Kapoor, Eunsuk Kang, Romulo Meira-Goes, David Garlan, Akila Ganlath, Shatadal Mishra, Nejib Ammar,
- Abstract summary: We introduce a new, expressive notion of tolerance that describes how well a controller is capable of satisfying a desired system requirement.
We propose a novel analysis problem, called the tolerance falsification problem, which involves finding small deviations that result in a violation of the given requirement.
We present a novel, two-layer simulation-based analysis framework and a novel search for finding small tolerance violations.
- Score: 8.869030580266799
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Cyber-physical systems (CPS) with reinforcement learning (RL)-based controllers are increasingly being deployed in complex physical environments such as autonomous vehicles, the Internet-of-Things(IoT), and smart cities. An important property of a CPS is tolerance; i.e., its ability to function safely under possible disturbances and uncertainties in the actual operation. In this paper, we introduce a new, expressive notion of tolerance that describes how well a controller is capable of satisfying a desired system requirement, specified using Signal Temporal Logic (STL), under possible deviations in the system. Based on this definition, we propose a novel analysis problem, called the tolerance falsification problem, which involves finding small deviations that result in a violation of the given requirement. We present a novel, two-layer simulation-based analysis framework and a novel search heuristic for finding small tolerance violations. To evaluate our approach, we construct a set of benchmark problems where system parameters can be configured to represent different types of uncertainties and disturbancesin the system. Our evaluation shows that our falsification approach and heuristic can effectively find small tolerance violations.
Related papers
- Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Investigating Robustness in Cyber-Physical Systems: Specification-Centric Analysis in the face of System Deviations [8.8690305802668]
A critical attribute of cyber-physical systems (CPS) is robustness, denoting its capacity to operate safely.
This paper proposes a novel specification-based robustness, which characterizes the effectiveness of a controller in meeting a specified system requirement.
We present an innovative two-layer simulation-based analysis framework designed to identify subtle robustness violations.
arXiv Detail & Related papers (2023-11-13T16:44:43Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
Multiple object tracking (MOT) is a fundamental component of perception systems for autonomous driving.
Despite the urge of safety in driving systems, no solution to the MOT adaptation problem to domain shift in test-time conditions has ever been proposed.
We introduce DARTH, a holistic test-time adaptation framework for MOT.
arXiv Detail & Related papers (2023-10-03T10:10:42Z) - Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control [2.325021848829375]
We propose a novel trajectory tracker integrating a Distributional Reinforcement Learning disturbance estimator for unknown aerodynamic effects.
The proposed estimator Constrained Distributional Reinforced disturbance estimator' (ConsDRED) accurately identifies uncertainties between true and estimated values of aerodynamic effects.
We demonstrate our system improves accumulative tracking errors by at least 70% compared with the recent art.
arXiv Detail & Related papers (2023-02-22T23:15:56Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
We propose a meta-learning method which is capable of adaptively learning a hyper parameter prediction function, called Noise-Aware-Robust-Loss-Adjuster (NARL-Adjuster for brevity)
Four SOTA robust loss functions are attempted to be integrated with our algorithm, and comprehensive experiments substantiate the general availability and effectiveness of the proposed method in both its noise tolerance and performance.
arXiv Detail & Related papers (2023-01-18T04:54:58Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Robust Policy Learning over Multiple Uncertainty Sets [91.67120465453179]
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments.
We develop an algorithm that enjoys the benefits of both system identification and robust RL.
arXiv Detail & Related papers (2022-02-14T20:06:28Z) - Adversarial Robustness Verification and Attack Synthesis in Stochastic
Systems [8.833548357664606]
We develop a formal framework for adversarial robustness in systems defined as discrete time Markov chains (DTMCs)
We outline a class of threat models under which adversaries can perturb system transitions, constrained by an $varepsilon$ ball around the original transition probabilities.
arXiv Detail & Related papers (2021-10-05T15:52:47Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Scalable Synthesis of Verified Controllers in Deep Reinforcement
Learning [0.0]
We propose an automated verification pipeline capable of synthesizing high-quality safety shields.
Our key insight involves separating safety verification from neural controller, using pre-computed verified safety shields to constrain neural controller training.
Experimental results over a range of realistic high-dimensional deep RL benchmarks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2021-04-20T19:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.