Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control
- URL: http://arxiv.org/abs/2302.11694v4
- Date: Mon, 15 Jul 2024 13:15:57 GMT
- Title: Constrained Reinforcement Learning using Distributional Representation for Trustworthy Quadrotor UAV Tracking Control
- Authors: Yanran Wang, David Boyle,
- Abstract summary: We propose a novel trajectory tracker integrating a Distributional Reinforcement Learning disturbance estimator for unknown aerodynamic effects.
The proposed estimator Constrained Distributional Reinforced disturbance estimator' (ConsDRED) accurately identifies uncertainties between true and estimated values of aerodynamic effects.
We demonstrate our system improves accumulative tracking errors by at least 70% compared with the recent art.
- Score: 2.325021848829375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneously accurate and reliable tracking control for quadrotors in complex dynamic environments is challenging. As aerodynamics derived from drag forces and moment variations are chaotic and difficult to precisely identify, most current quadrotor tracking systems treat them as simple `disturbances' in conventional control approaches. We propose a novel, interpretable trajectory tracker integrating a Distributional Reinforcement Learning disturbance estimator for unknown aerodynamic effects with a Stochastic Model Predictive Controller (SMPC). The proposed estimator `Constrained Distributional Reinforced disturbance estimator' (ConsDRED) accurately identifies uncertainties between true and estimated values of aerodynamic effects. Simplified Affine Disturbance Feedback is used for control parameterization to guarantee convexity, which we then integrate with a SMPC. We theoretically guarantee that ConsDRED achieves at least an optimal global convergence rate and a certain sublinear rate if constraints are violated with an error decreases as the width and the layer of neural network increase. To demonstrate practicality, we show convergent training in simulation and real-world experiments, and empirically verify that ConsDRED is less sensitive to hyperparameter settings compared with canonical constrained RL approaches. We demonstrate our system improves accumulative tracking errors by at least 70% compared with the recent art. Importantly, the proposed framework, ConsDRED-SMPC, balances the tradeoff between pursuing high performance and obeying conservative constraints for practical implementations.
Related papers
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
This paper introduces a Non-linear Model Predictive Control (NMPC) framework for the DJI Matrice 100.
The framework supports various trajectory types and employs a penalty-based cost function for control accuracy in tight maneuvers.
arXiv Detail & Related papers (2024-10-03T17:50:19Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
We propose a theoretical framework for studying behavior cloning of complex expert demonstrations using generative modeling.
We show that pure supervised cloning can generate trajectories matching the per-time step distribution of arbitrary expert trajectories.
arXiv Detail & Related papers (2023-07-27T04:27:26Z) - Interpretable Stochastic Model Predictive Control using Distributional
Reinforced Estimation for Quadrotor Tracking Systems [0.8411385346896411]
We present a novel trajectory tracker for autonomous quadrotor navigation in dynamic and complex environments.
The proposed framework integrates a distributional Reinforcement Learning estimator for unknown aerodynamic effects into a Model Predictive Controller.
We demonstrate our system to improve the cumulative tracking errors by at least 66% with unknown and diverse aerodynamic forces.
arXiv Detail & Related papers (2022-05-14T23:27:38Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
The trade-off between robustness and accuracy has been widely studied in the adversarial literature.
We find that it may stem from the improperly defined robust error, which imposes an inductive bias of local invariance.
By definition, SCORE facilitates the reconciliation between robustness and accuracy, while still handling the worst-case uncertainty.
arXiv Detail & Related papers (2022-02-21T10:36:09Z) - Guaranteed Trajectory Tracking under Learned Dynamics with Contraction Metrics and Disturbance Estimation [5.147919654191323]
This paper presents an approach to trajectory-centric learning control based on contraction metrics and disturbance estimation.
The proposed framework is validated on a planar quadrotor example.
arXiv Detail & Related papers (2021-12-15T15:57:33Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
This paper addresses learning safe output feedback control laws from partial observations of expert demonstrations.
We first propose robust output control barrier functions (ROCBFs) as a means to guarantee safety.
We then formulate an optimization problem to learn ROCBFs from expert demonstrations that exhibit safe system behavior.
arXiv Detail & Related papers (2021-11-18T23:21:00Z) - Regret-optimal Estimation and Control [52.28457815067461]
We show that the regret-optimal estimator and regret-optimal controller can be derived in state-space form.
We propose regret-optimal analogs of Model-Predictive Control (MPC) and the Extended KalmanFilter (EKF) for systems with nonlinear dynamics.
arXiv Detail & Related papers (2021-06-22T23:14:21Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Certainty Equivalent Perception-Based Control [29.216967322052785]
We show a uniform error bound on non kernel regression under a dynamically-achievable dense sampling scheme.
This allows for a finite-time convergence rate on the sub-optimality of using the regressor in closed-loop for waypoint tracking.
arXiv Detail & Related papers (2020-08-27T18:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.