Bayesian temporal biclustering with applications to multi-subject neuroscience studies
- URL: http://arxiv.org/abs/2406.17131v1
- Date: Mon, 24 Jun 2024 20:41:37 GMT
- Title: Bayesian temporal biclustering with applications to multi-subject neuroscience studies
- Authors: Federica Zoe Ricci, Erik B. Sudderth, Jaylen Lee, Megan A. K. Peters, Marina Vannucci, Michele Guindani,
- Abstract summary: We propose a Bayesian model for temporal biclustering featuring nested partitions, where a time-invariant partition of subjects induces a time-varying partition of measurements.
Our approach allows for data-driven determination of the number of subject and measurement clusters as well as estimation of the number and location of changepoints in measurement partitions.
- Score: 6.515516311120015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of analyzing multivariate time series collected on multiple subjects, with the goal of identifying groups of subjects exhibiting similar trends in their recorded measurements over time as well as time-varying groups of associated measurements. To this end, we propose a Bayesian model for temporal biclustering featuring nested partitions, where a time-invariant partition of subjects induces a time-varying partition of measurements. Our approach allows for data-driven determination of the number of subject and measurement clusters as well as estimation of the number and location of changepoints in measurement partitions. To efficiently perform model fitting and posterior estimation with Markov Chain Monte Carlo, we derive a blocked update of measurements' cluster-assignment sequences. We illustrate the performance of our model in two applications to functional magnetic resonance imaging data and to an electroencephalogram dataset. The results indicate that the proposed model can combine information from potentially many subjects to discover a set of interpretable, dynamic patterns. Experiments on simulated data compare the estimation performance of the proposed model against ground-truth values and other statistical methods, showing that it performs well at identifying ground-truth subject and measurement clusters even when no subject or time dependence is present.
Related papers
- Measuring Time-Series Dataset Similarity using Wasserstein Distance [21.101558938915634]
A time-series dataset similarity measure aids research in multiple ways, including model selection, finetuning, and visualization.<n>We propose a distribution-based method to measure time-series dataset similarity by leveraging the Wasserstein distance.
arXiv Detail & Related papers (2025-07-29T19:33:10Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Wasserstein multivariate auto-regressive models for modeling distributional time series [0.0]
We propose a new auto-regressive model for the statistical analysis of multivariate distributional time series.
Results on the existence, uniqueness and stationarity of the solution of such a model are provided.
To shed some light on the benefits of our approach for real data analysis, we also apply this methodology to a data set made of observations from age distribution in different countries.
arXiv Detail & Related papers (2022-07-12T10:18:36Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Time Series Clustering for Human Behavior Pattern Mining [11.906475748246532]
We propose a novel clustering approach for modeling human behavior from time-series data.
For mining frequent human behavior patterns effectively, we utilize a three-stage pipeline.
Empirical studies on two real-world datasets and a simulated dataset demonstrate the effectiveness of MTpattern.
arXiv Detail & Related papers (2021-10-14T17:19:35Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of time series modeling research.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems.
arXiv Detail & Related papers (2021-03-16T22:16:54Z) - Time Adaptive Gaussian Model [0.913755431537592]
Our model is a generalization of state-of-the-art methods for the inference of temporal graphical models.
It performs pattern recognition by clustering data points in time; and, it finds probabilistic (and possibly causal) relationships among the observed variables.
arXiv Detail & Related papers (2021-02-02T00:28:14Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.