Virtual Mines -- Component-level recycling of printed circuit boards using deep learning
- URL: http://arxiv.org/abs/2406.17162v1
- Date: Mon, 24 Jun 2024 22:29:30 GMT
- Title: Virtual Mines -- Component-level recycling of printed circuit boards using deep learning
- Authors: Muhammad Mohsin, Stefano Rovetta, Francesco Masulli, Alberto Cabri,
- Abstract summary: "Virtual mines" concept refers to production cycles where interesting raw materials are reclaimed in an efficient manner from end-of-life items.
This paper describes a pipeline based on deep learning model to recycle printed circuit boards at the component level.
A pre-trained YOLOv5 model is used to analyze the results of the locally developed dataset.
- Score: 4.849820402342814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This contribution gives an overview of an ongoing project using machine learning and computer vision components for improving the electronic waste recycling process. In circular economy, the "virtual mines" concept refers to production cycles where interesting raw materials are reclaimed in an efficient and cost-effective manner from end-of-life items. In particular, the growth of e-waste, due to the increasingly shorter life cycle of hi-tech goods, is a global problem. In this paper, we describe a pipeline based on deep learning model to recycle printed circuit boards at the component level. A pre-trained YOLOv5 model is used to analyze the results of the locally developed dataset. With a different distribution of class instances, YOLOv5 managed to achieve satisfactory precision and recall, with the ability to optimize with large component instances.
Related papers
- Advancing Recycling Efficiency: A Comparative Analysis of Deep Learning Models in Waste Classification [0.0]
The research tackles the pressing issue of waste classification for recycling by analyzing various deep learning models.
The results indicate the method significantly boosts accuracy in complex waste categories.
The research paves the way for future advancements in multi-category waste recycling.
arXiv Detail & Related papers (2024-11-05T03:44:54Z) - Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network architecture to model link-level bicycling volumes.
We estimate the Annual Average Daily Bicycle (AADB) counts across the City of Melbourne, Australia using Strava Metro bicycling count data.
Our results show that the GCN model performs better than these traditional models in predicting AADB counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - Measuring the Recyclability of Electronic Components to Assist Automatic Disassembly and Sorting Waste Printed Circuit Boards [4.0998481751764]
We focus on the measurement of recyclability of waste electronic components (WECs) from waste printed circuit boards (WPCBs) using mathematical innovation model.
This innovative approach evaluates both the recyclability and recycling difficulties of WECs, integrating an AI model for improved disassembly and sorting.
arXiv Detail & Related papers (2024-06-24T12:33:56Z) - SpectralWaste Dataset: Multimodal Data for Waste Sorting Automation [46.178512739789426]
We present SpectralWaste, the first dataset collected from an operational plastic waste sorting facility.
This dataset contains labels for several categories of objects that commonly appear in sorting plants.
We propose a pipeline employing different object segmentation architectures and evaluate the alternatives on our dataset.
arXiv Detail & Related papers (2024-03-26T18:39:38Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
We show that policies can compose environmental factors from their data to succeed when encountering unseen factor combinations.
We propose better in-domain data collection strategies that exploit composition.
We provide videos at http://iliad.stanford.edu/robot-data-comp/.
arXiv Detail & Related papers (2024-03-08T07:15:38Z) - Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages [56.98243487769916]
Plasticity, the ability of a neural network to evolve with new data, is crucial for high-performance and sample-efficient visual reinforcement learning.
We propose Adaptive RR, which dynamically adjusts the replay ratio based on the critic's plasticity level.
arXiv Detail & Related papers (2023-10-11T12:05:34Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Reverse Logistics Network Design to Estimate the Economic and
Environmental Impacts of Take-back Legislation: A Case Study for E-waste
Management System in Washington State [3.7406100634766646]
We study the whole reverse logistics network associated with recycling and remanufacturing of e-waste in the system-optimum model.
We split the logistics network into two distinct parts in the user-optimum model in order to derive an optimum solution from the users' standpoint.
Implementing the proposed models on an illustrative example shows how they are capable of estimating the economic and environmental impacts of take-back legislation.
arXiv Detail & Related papers (2023-01-24T02:50:09Z) - Machine Learning and Artificial Intelligence in Circular Economy: A
Bibliometric Analysis and Systematic Literature Review [0.0]
Circular economy (CE) aims to complete the product life cycle loop by bringing out the highest values from raw materials in the design phase and later on by reusing, recycling, and remanufacturing.
This study explores the adoption and integration of applied AI techniques in CE.
arXiv Detail & Related papers (2022-04-01T07:05:13Z) - Towards artificially intelligent recycling Improving image processing
for waste classification [0.0]
IBM's Wastenet project aims to improve recycling by using artificial intelligence for waste classification.
This paper builds on this project through the use of transfer learning and data augmentation techniques.
Results show that these augmentation techniques further improve the test accuracy of the final model to 95.40%.
arXiv Detail & Related papers (2021-08-09T21:41:48Z) - Unsupervised Learning of 3D Object Categories from Videos in the Wild [75.09720013151247]
We focus on learning a model from multiple views of a large collection of object instances.
We propose a new neural network design, called warp-conditioned ray embedding (WCR), which significantly improves reconstruction.
Our evaluation demonstrates performance improvements over several deep monocular reconstruction baselines on existing benchmarks.
arXiv Detail & Related papers (2021-03-30T17:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.