Geometric Median (GM) Matching for Robust Data Pruning
- URL: http://arxiv.org/abs/2406.17188v2
- Date: Fri, 17 Jan 2025 08:38:45 GMT
- Title: Geometric Median (GM) Matching for Robust Data Pruning
- Authors: Anish Acharya, Inderjit S Dhillon, Sujay Sanghavi,
- Abstract summary: We propose a herding style greedy algorithm that yields a $k$-subset that approximates the geometric median of a noisy dataset.<n>Experiments across several popular deep learning benchmarks indicate that $gm$ Matching consistently improves over prior state-of-the-art.
- Score: 29.458270105150564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale data collections in the wild, are invariably noisy. Thus developing data pruning strategies that remain robust even in the presence of corruption is critical in practice. In this work, we propose Geometric Median ($\gm$) Matching -- a herding style greedy algorithm that yields a $k$-subset such that the mean of the subset approximates the geometric median of the (potentially) noisy dataset. Theoretically, we show that $\gm$ Matching enjoys an improved $\gO(1/k)$ scaling over $\gO(1/\sqrt{k})$ scaling of uniform sampling; while achieving {\bf optimal breakdown point} of {\bf 1/2} even under {\bf arbitrary} corruption. Extensive experiments across several popular deep learning benchmarks indicate that $\gm$ Matching consistently improves over prior state-of-the-art; the gains become more profound at high rates of corruption and aggressive pruning rates; making $\gm$ Matching a strong baseline for future research in robust data pruning.
Related papers
- Geometric Median Matching for Robust k-Subset Selection from Noisy Data [75.86423267723728]
We propose a novel k-subset selection strategy that leverages Geometric Median -- a robust estimator with an optimal breakdown point of 1/2.
Our method iteratively selects a k-subset such that the mean of the subset approximates the GM of the (potentially) noisy dataset, ensuring robustness even under arbitrary corruption.
arXiv Detail & Related papers (2025-04-01T09:22:05Z) - CURATRON: Complete and Robust Preference Data for Rigorous Alignment of Large Language Models [1.6339731044538859]
This paper addresses the challenges of aligning large language models with human values via preference learning.
We propose a novel method for robustly and maliciously manipulated AI pipeline datasets to enhance LLMs' resilience.
arXiv Detail & Related papers (2024-03-05T07:58:12Z) - A Combinatorial Approach to Robust PCA [18.740048806623037]
We study the problem of recovering Gaussian data under adversarial corruptions.
We assume that the Gaussian noises lie in an unknown $k$-dimensional subspace $U subseteq mathbbRd$, and $s$ randomly chosen coordinates of each data point fall into the control of an adversary.
Our main result is an efficient algorithm that, when $ks2 = O(d)$, recovers every single data point up to a nearly-optimal error of $tilde O(ks/d)$ in expectation.
arXiv Detail & Related papers (2023-11-28T01:49:51Z) - Corruption-Robust Offline Reinforcement Learning with General Function
Approximation [60.91257031278004]
We investigate the problem of corruption in offline reinforcement learning (RL) with general function approximation.
Our goal is to find a policy that is robust to such corruption and minimizes the suboptimality gap with respect to the optimal policy for the uncorrupted Markov decision processes (MDPs)
arXiv Detail & Related papers (2023-10-23T04:07:26Z) - Sample-Efficient Linear Representation Learning from Non-IID Non-Isotropic Data [4.971690889257356]
We introduce an adaptation of the alternating minimization-descent scheme proposed by Collins and Nayer and Vaswani.
We show that vanilla alternating-minimization descent fails catastrophically even for iid, but mildly non-isotropic data.
Our analysis unifies and generalizes prior work, and provides a flexible framework for a wider range of applications.
arXiv Detail & Related papers (2023-08-08T17:56:20Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - Data Structures for Density Estimation [66.36971978162461]
Given a sublinear (in $n$) number of samples from $p$, our main result is the first data structure that identifies $v_i$ in time sublinear in $k$.
We also give an improved version of the algorithm of Acharya et al. that reports $v_i$ in time linear in $k$.
arXiv Detail & Related papers (2023-06-20T06:13:56Z) - Revisiting Rotation Averaging: Uncertainties and Robust Losses [51.64986160468128]
We argue that the main problem of current methods is the minimized cost function that is only weakly connected with the input data via the estimated epipolar.
We propose to better model the underlying noise distributions by directly propagating the uncertainty from the point correspondences into the rotation averaging.
arXiv Detail & Related papers (2023-03-09T11:51:20Z) - Differentially-Private Hierarchical Clustering with Provable
Approximation Guarantees [79.59010418610625]
We study differentially private approximation algorithms for hierarchical clustering.
We show strong lower bounds for the problem: that any $epsilon$-DP algorithm must exhibit $O(|V|2/ epsilon)$-additive error for an input dataset.
We propose a private $1+o(1)$ approximation algorithm which also recovers the blocks exactly.
arXiv Detail & Related papers (2023-01-31T19:14:30Z) - Importance Weighted Actor-Critic for Optimal Conservative Offline
Reinforcement Learning [23.222448307481073]
We propose a new practical algorithm for offline reinforcement learning (RL) in complex environments with insufficient data coverage.
Our algorithm combines the marginalized importance sampling framework with the actor-critic paradigm.
We provide both theoretical analysis and experimental results to validate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2023-01-30T07:53:53Z) - Improved Learning-augmented Algorithms for k-means and k-medians
Clustering [8.04779839951237]
We consider the problem of clustering in the learning-augmented setting, where we are given a data set in $d$-dimensional Euclidean space.
We propose a deterministic $k$-means algorithm that produces centers with improved bound on clustering cost.
Our algorithm works even when the predictions are not very accurate, i.e. our bound holds for $alpha$ up to $1/2$, an improvement over $alpha$ being at most $1/7$ in the previous work.
arXiv Detail & Related papers (2022-10-31T03:00:11Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Scalable Differentially Private Clustering via Hierarchically Separated
Trees [82.69664595378869]
We show that our method computes a solution with cost at most $O(d3/2log n)cdot OPT + O(k d2 log2 n / epsilon2)$, where $epsilon$ is the privacy guarantee.
Although the worst-case guarantee is worse than that of state of the art private clustering methods, the algorithm we propose is practical.
arXiv Detail & Related papers (2022-06-17T09:24:41Z) - Minimax Optimal Algorithms with Fixed-$k$-Nearest Neighbors [13.231906521852718]
We consider a distributed learning scenario in which a massive dataset is split into smaller groups.
We propose emphoptimal rules to aggregate the fixed-$k$-NN information for classification, regression, and density estimation.
We show that the distributed algorithm with a fixed $k$ over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor.
arXiv Detail & Related papers (2022-02-05T01:59:09Z) - Iterative Feature Matching: Toward Provable Domain Generalization with
Logarithmic Environments [55.24895403089543]
Domain generalization aims at performing well on unseen test environments with data from a limited number of training environments.
We present a new algorithm based on performing iterative feature matching that is guaranteed with high probability to yield a predictor that generalizes after seeing only $O(logd_s)$ environments.
arXiv Detail & Related papers (2021-06-18T04:39:19Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Sample Complexity of Adversarially Robust Linear Classification on
Separated Data [41.30425613353595]
We consider the sample complexity of learning with adversarial robustness.
We show that for very well-separated data, convergence rates of $O(frac1n)$ are achievable.
arXiv Detail & Related papers (2020-12-19T22:04:59Z) - Hybrid Stochastic-Deterministic Minibatch Proximal Gradient:
Less-Than-Single-Pass Optimization with Nearly Optimal Generalization [83.80460802169999]
We show that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
For loss factors, we prove that HSDMPG can attain an $mathcalObig (1/sttnbig)$ which is at the order of excess error on a learning model.
arXiv Detail & Related papers (2020-09-18T02:18:44Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Entropy Regularized Power k-Means Clustering [21.013169939337583]
We propose a scalable majorization-minimization algorithm that enjoys closed-form updates and convergence guarantees.
Our method retains the same computational complexity of $k$-means and power $k$-means, but yields significant improvements over both.
arXiv Detail & Related papers (2020-01-10T14:05:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.