Contrastive General Graph Matching with Adaptive Augmentation Sampling
- URL: http://arxiv.org/abs/2406.17199v1
- Date: Tue, 25 Jun 2024 01:08:03 GMT
- Title: Contrastive General Graph Matching with Adaptive Augmentation Sampling
- Authors: Jianyuan Bo, Yuan Fang,
- Abstract summary: We introduce a novel Graph-centric Contrastive framework for Graph Matching (GCGM)
GCGM capitalizes on a vast pool of graph augmentations for contrastive learning, yet without needing any side information.
Our GCGM surpasses state-of-the-art self-supervised methods across various datasets.
- Score: 5.3459881796368505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph matching has important applications in pattern recognition and beyond. Current approaches predominantly adopt supervised learning, demanding extensive labeled data which can be limited or costly. Meanwhile, self-supervised learning methods for graph matching often require additional side information such as extra categorical information and input features, limiting their application to the general case. Moreover, designing the optimal graph augmentations for self-supervised graph matching presents another challenge to ensure robustness and efficacy. To address these issues, we introduce a novel Graph-centric Contrastive framework for Graph Matching (GCGM), capitalizing on a vast pool of graph augmentations for contrastive learning, yet without needing any side information. Given the variety of augmentation choices, we further introduce a Boosting-inspired Adaptive Augmentation Sampler (BiAS), which adaptively selects more challenging augmentations tailored for graph matching. Through various experiments, our GCGM surpasses state-of-the-art self-supervised methods across various datasets, marking a significant step toward more effective, efficient and general graph matching.
Related papers
- AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
Graph foundation models offer the potential to learn robust, generalizable representations from graph data.
In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges.
Our experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph.
arXiv Detail & Related papers (2024-08-20T09:57:13Z) - Label-invariant Augmentation for Semi-Supervised Graph Classification [32.591130704357184]
Recently, contrastiveness-based augmentation surges a new climax in the computer vision domain.
Unlike images, it is much more difficult to design reasonable augmentations without changing the nature of graphs.
We propose a label-invariant augmentation for graph-structured data to address this challenge.
arXiv Detail & Related papers (2022-05-19T18:44:02Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Bootstrapping Informative Graph Augmentation via A Meta Learning
Approach [21.814940639910358]
In graph contrastive learning, benchmark methods apply various graph augmentation approaches.
Most of the augmentation methods are non-learnable, which causes the issue of generating unbeneficial augmented graphs.
We motivate our method to generate augmented graph by a learnable graph augmenter, called MEta Graph Augmentation (MEGA)
arXiv Detail & Related papers (2022-01-11T07:15:13Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Graph Contrastive Learning Automated [94.41860307845812]
Graph contrastive learning (GraphCL) has emerged with promising representation learning performance.
The effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset.
This paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data.
arXiv Detail & Related papers (2021-06-10T16:35:27Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
We propose a multi-level graph matching network (MGMN) framework for computing the graph similarity between any pair of graph-structured objects.
To compensate for the lack of standard benchmark datasets, we have created and collected a set of datasets for both the graph-graph classification and graph-graph regression tasks.
Comprehensive experiments demonstrate that MGMN consistently outperforms state-of-the-art baseline models on both the graph-graph classification and graph-graph regression tasks.
arXiv Detail & Related papers (2020-07-08T19:48:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.