Graph Contrastive Learning Automated
- URL: http://arxiv.org/abs/2106.07594v1
- Date: Thu, 10 Jun 2021 16:35:27 GMT
- Title: Graph Contrastive Learning Automated
- Authors: Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang
- Abstract summary: Graph contrastive learning (GraphCL) has emerged with promising representation learning performance.
The effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset.
This paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data.
- Score: 94.41860307845812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised learning on graph-structured data has drawn recent interest
for learning generalizable, transferable and robust representations from
unlabeled graphs. Among many, graph contrastive learning (GraphCL) has emerged
with promising representation learning performance. Unfortunately, unlike its
counterpart on image data, the effectiveness of GraphCL hinges on ad-hoc data
augmentations, which have to be manually picked per dataset, by either rules of
thumb or trial-and-errors, owing to the diverse nature of graph data. That
significantly limits the more general applicability of GraphCL. Aiming to fill
in this crucial gap, this paper proposes a unified bi-level optimization
framework to automatically, adaptively and dynamically select data
augmentations when performing GraphCL on specific graph data. The general
framework, dubbed JOint Augmentation Optimization (JOAO), is instantiated as
min-max optimization. The selections of augmentations made by JOAO are shown to
be in general aligned with previous "best practices" observed from handcrafted
tuning: yet now being automated, more flexible and versatile. Moreover, we
propose a new augmentation-aware projection head mechanism, which will route
output features through different projection heads corresponding to different
augmentations chosen at each training step. Extensive experiments demonstrate
that JOAO performs on par with or sometimes better than the state-of-the-art
competitors including GraphCL, on multiple graph datasets of various scales and
types, yet without resorting to any laborious dataset-specific tuning on
augmentation selection. We release the code at
https://github.com/Shen-Lab/GraphCL_Automated.
Related papers
- Contrastive General Graph Matching with Adaptive Augmentation Sampling [5.3459881796368505]
We introduce a novel Graph-centric Contrastive framework for Graph Matching (GCGM)
GCGM capitalizes on a vast pool of graph augmentations for contrastive learning, yet without needing any side information.
Our GCGM surpasses state-of-the-art self-supervised methods across various datasets.
arXiv Detail & Related papers (2024-06-25T01:08:03Z) - Graph Mixture of Experts: Learning on Large-Scale Graphs with Explicit
Diversity Modeling [60.0185734837814]
Graph neural networks (GNNs) have found extensive applications in learning from graph data.
To bolster the generalization capacity of GNNs, it has become customary to augment training graph structures with techniques like graph augmentations.
This study introduces the concept of Mixture-of-Experts (MoE) to GNNs, with the aim of augmenting their capacity to adapt to a diverse range of training graph structures.
arXiv Detail & Related papers (2023-04-06T01:09:36Z) - Hybrid Augmented Automated Graph Contrastive Learning [3.785553471764994]
We propose a framework called Hybrid Augmented Automated Graph Contrastive Learning (HAGCL)
HAGCL consists of a feature-level learnable view generator and an edge-level learnable view generator.
It insures to learn the most semantically meaningful structure in terms of features and topology.
arXiv Detail & Related papers (2023-03-24T03:26:20Z) - Graph Contrastive Learning with Personalized Augmentation [17.714437631216516]
Graph contrastive learning (GCL) has emerged as an effective tool for learning unsupervised representations of graphs.
We propose a principled framework, termed as textitGraph contrastive learning with textitPersonalized textitAugmentation (GPA)
GPA infers tailored augmentation strategies for each graph based on its topology and node attributes via a learnable augmentation selector.
arXiv Detail & Related papers (2022-09-14T11:37:48Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Bringing Your Own View: Graph Contrastive Learning without Prefabricated
Data Augmentations [94.41860307845812]
Self-supervision is recently surging at its new frontier of graph learning.
GraphCL uses a prefabricated prior reflected by the ad-hoc manual selection of graph data augmentations.
We have extended the prefabricated discrete prior in the augmentation set, to a learnable continuous prior in the parameter space of graph generators.
We have leveraged both principles of information minimization (InfoMin) and information bottleneck (InfoBN) to regularize the learned priors.
arXiv Detail & Related papers (2022-01-04T15:49:18Z) - Augmentation-Free Self-Supervised Learning on Graphs [7.146027549101716]
We propose a novel augmentation-free self-supervised learning framework for graphs, named AFGRL.
Specifically, we generate an alternative view of a graph by discovering nodes that share the local structural information and the global semantics with the graph.
arXiv Detail & Related papers (2021-12-05T04:20:44Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.