TopoGCL: Topological Graph Contrastive Learning
- URL: http://arxiv.org/abs/2406.17251v1
- Date: Tue, 25 Jun 2024 03:35:20 GMT
- Title: TopoGCL: Topological Graph Contrastive Learning
- Authors: Yuzhou Chen, Jose Frias, Yulia R. Gel,
- Abstract summary: Graph contrastive learning (GCL) has recently emerged as a new concept which allows for capitalizing on the strengths of graph neural networks (GNNs)
We introduce the concepts of topological invariance and extended persistence on graphs to GCL.
Our results show that the new Topological Graph Contrastive Learning (TopoGCL) model delivers significant performance gains in unsupervised graph classification for 11 out of 12 considered datasets and also exhibits robustness under noisy scenarios.
- Score: 32.993034801654105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph contrastive learning (GCL) has recently emerged as a new concept which allows for capitalizing on the strengths of graph neural networks (GNNs) to learn rich representations in a wide variety of applications which involve abundant unlabeled information. However, existing GCL approaches largely tend to overlook the important latent information on higher-order graph substructures. We address this limitation by introducing the concepts of topological invariance and extended persistence on graphs to GCL. In particular, we propose a new contrastive mode which targets topological representations of the two augmented views from the same graph, yielded by extracting latent shape properties of the graph at multiple resolutions. Along with the extended topological layer, we introduce a new extended persistence summary, namely, extended persistence landscapes (EPL) and derive its theoretical stability guarantees. Our extensive numerical results on biological, chemical, and social interaction graphs show that the new Topological Graph Contrastive Learning (TopoGCL) model delivers significant performance gains in unsupervised graph classification for 11 out of 12 considered datasets and also exhibits robustness under noisy scenarios.
Related papers
- Tensor-Fused Multi-View Graph Contrastive Learning [12.412040359604163]
Graph contrastive learning (GCL) has emerged as a promising approach to enhance graph neural networks' (GNNs) ability to learn rich representations from unlabeled graph-structured data.
Current GCL models face challenges with computational demands and limited feature utilization.
We propose TensorMV-GCL, a novel framework that integrates extended persistent homology with GCL representations and facilitates multi-scale feature extraction.
arXiv Detail & Related papers (2024-10-20T01:40:12Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
Topological Evolution Rate (TopER) is a low-dimensional embedding approach grounded in topological data analysis.
TopER simplifies a key topological approach, Persistent Homology, by calculating the evolution rate of graph substructures.
Our models achieve or surpass state-of-the-art results across molecular, biological, and social network datasets in tasks such as classification, clustering, and visualization.
arXiv Detail & Related papers (2024-10-02T17:31:33Z) - When Witnesses Defend: A Witness Graph Topological Layer for Adversarial Graph Learning [19.566775406771757]
We bridge adversarial graph learning with the emerging tools from computational topology, namely, persistent homology representations of graphs.
We introduce the concept of witness complex to adversarial analysis on graphs, which allows us to focus only on the salient shape characteristics of graphs, with minimal loss of topological information on the whole graph.
Armed with the witness mechanism, we design Witness Graph Topological Layer (WGTL), which systematically integrates both local and global topological graph feature representations, the impact of which is, in turn, automatically controlled by the robust regularized topological loss.
arXiv Detail & Related papers (2024-09-21T14:53:32Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Topological Pooling on Graphs [24.584372324701885]
Graph neural networks (GNNs) have demonstrated a significant success in various graph learning tasks.
We propose a novel topological pooling layer and witness complex-based topological embedding mechanism.
We show that Wit-TopoPool significantly outperforms all competitors across all datasets.
arXiv Detail & Related papers (2023-03-25T19:30:46Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
Graph neural networks generalize conventional neural networks to graph-structured data.
The performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry.
Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution.
arXiv Detail & Related papers (2022-02-28T15:08:48Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Topological Relational Learning on Graphs [2.4692806302088868]
Graph neural networks (GNNs) have emerged as a powerful tool for graph classification and representation learning.
We propose a novel topological relational inference (TRI) which allows for integrating higher-order graph information to GNNs.
We show that the new TRI-GNN outperforms all 14 state-of-the-art baselines on 6 out 7 graphs and exhibit higher robustness to perturbations.
arXiv Detail & Related papers (2021-10-29T04:03:27Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.