Source-independent quantum secret sharing with entangled photon pair networks
- URL: http://arxiv.org/abs/2407.16462v1
- Date: Tue, 23 Jul 2024 13:24:28 GMT
- Title: Source-independent quantum secret sharing with entangled photon pair networks
- Authors: Yi-Ran Xiao, Zhao-Ying Jia, Yu-Chen Song, Yu Bao, Yao Fu, Hua-Lei Yin, Zeng-Bing Chen,
- Abstract summary: We present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks.
Our protocol has great performance and technical advantages in future quantum networks.
- Score: 15.3505990843415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The large-scale deployment of quantum secret sharing (QSS) in quantum networks is currently challenging due to the requirements for the generation and distribution of multipartite entanglement states. Here we present an efficient source-independent QSS protocol utilizing entangled photon pairs in quantum networks. Through the post-matching method, which means the measurement events in the same basis are matched, the key rate is almost independent of the number of participants. In addition, the unconditional security of our QSS against internal and external eavesdroppers can be proved by introducing an equivalent virtual protocol. Our protocol has great performance and technical advantages in future quantum networks.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Experimental coherent-state quantum secret sharing with finite pulses [15.261941167557849]
Quantum secret sharing (QSS) plays a significant role in quantum communication.
We propose a three-user QSS protocol based on phase-encoding technology.
Our protocol achieves secure key rates ranging from 432 to 192 bps.
arXiv Detail & Related papers (2024-10-08T09:01:06Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.