Forget but Recall: Incremental Latent Rectification in Continual Learning
- URL: http://arxiv.org/abs/2406.17381v1
- Date: Tue, 25 Jun 2024 08:57:47 GMT
- Title: Forget but Recall: Incremental Latent Rectification in Continual Learning
- Authors: Nghia D. Nguyen, Hieu Trung Nguyen, Ang Li, Hoang Pham, Viet Anh Nguyen, Khoa D. Doan,
- Abstract summary: Intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs)
Existing Continual Learning approaches either retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks.
This paper investigates an unexplored CL direction for incremental learning called Incremental Latent Rectification or ILR.
- Score: 21.600690867361617
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs). However, current DNNs suffer from catastrophic forgetting, which hinders remembering past knowledge. To mitigate this issue, existing Continual Learning (CL) approaches either retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks. This paper investigates an unexplored CL direction for incremental learning called Incremental Latent Rectification or ILR. In a nutshell, ILR learns to propagate with correction (or rectify) the representation from the current trained DNN backward to the representation space of the old task, where performing predictive decisions is easier. This rectification process only employs a chain of small representation mapping networks, called rectifier units. Empirical experiments on several continual learning benchmarks, including CIFAR10, CIFAR100, and Tiny ImageNet, demonstrate the effectiveness and potential of this novel CL direction compared to existing representative CL methods.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Overcoming Domain Drift in Online Continual Learning [24.86094018430407]
Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks.
OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks.
We propose a novel rehearsal strategy, Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects.
arXiv Detail & Related papers (2024-05-15T06:57:18Z) - On-Device Learning with Binary Neural Networks [2.7040098749051635]
We propose a CL solution that embraces the recent advancements in CL field and the efficiency of the Binary Neural Networks (BNN)
The choice of a binary network as backbone is essential to meet the constraints of low power devices.
arXiv Detail & Related papers (2023-08-29T13:48:35Z) - New Insights on Reducing Abrupt Representation Change in Online
Continual Learning [69.05515249097208]
We focus on the change in representations of observed data that arises when previously unobserved classes appear in the incoming data stream.
We show that applying Experience Replay causes the newly added classes' representations to overlap significantly with the previous classes.
We propose a new method which mitigates this issue by shielding the learned representations from drastic adaptation to accommodate new classes.
arXiv Detail & Related papers (2022-03-08T01:37:00Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
Current state-of-the-art incremental learning methods tackle catastrophic forgetting problem in traditional classification networks.
We propose a novel class-incremental method for embedding network, named as zero-shot translation class-incremental method (ZSTCI)
In addition, ZSTCI can easily be combined with existing regularization-based incremental learning methods to further improve performance of embedding networks.
arXiv Detail & Related papers (2020-12-31T08:21:37Z) - SID: Incremental Learning for Anchor-Free Object Detection via Selective
and Inter-Related Distillation [16.281712605385316]
Incremental learning requires a model to continually learn new tasks from streaming data.
Traditional fine-tuning of a well-trained deep neural network on a new task will dramatically degrade performance on the old task.
We propose a novel incremental learning paradigm called Selective and Inter-related Distillation (SID)
arXiv Detail & Related papers (2020-12-31T04:12:06Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.