Overcoming Domain Drift in Online Continual Learning
- URL: http://arxiv.org/abs/2405.09133v1
- Date: Wed, 15 May 2024 06:57:18 GMT
- Title: Overcoming Domain Drift in Online Continual Learning
- Authors: Fan Lyu, Daofeng Liu, Linglan Zhao, Zhang Zhang, Fanhua Shang, Fuyuan Hu, Wei Feng, Liang Wang,
- Abstract summary: Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks.
OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks.
We propose a novel rehearsal strategy, Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects.
- Score: 24.86094018430407
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online Continual Learning (OCL) empowers machine learning models to acquire new knowledge online across a sequence of tasks. However, OCL faces a significant challenge: catastrophic forgetting, wherein the model learned in previous tasks is substantially overwritten upon encountering new tasks, leading to a biased forgetting of prior knowledge. Moreover, the continual doman drift in sequential learning tasks may entail the gradual displacement of the decision boundaries in the learned feature space, rendering the learned knowledge susceptible to forgetting. To address the above problem, in this paper, we propose a novel rehearsal strategy, termed Drift-Reducing Rehearsal (DRR), to anchor the domain of old tasks and reduce the negative transfer effects. First, we propose to select memory for more representative samples guided by constructed centroids in a data stream. Then, to keep the model from domain chaos in drifting, a two-level angular cross-task Contrastive Margin Loss (CML) is proposed, to encourage the intra-class and intra-task compactness, and increase the inter-class and inter-task discrepancy. Finally, to further suppress the continual domain drift, we present an optional Centorid Distillation Loss (CDL) on the rehearsal memory to anchor the knowledge in feature space for each previous old task. Extensive experimental results on four benchmark datasets validate that the proposed DRR can effectively mitigate the continual domain drift and achieve the state-of-the-art (SOTA) performance in OCL.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Continual Diffuser (CoD): Mastering Continual Offline Reinforcement Learning with Experience Rehearsal [54.93261535899478]
In real-world applications, such as robotic control of reinforcement learning, the tasks are changing, and new tasks arise in a sequential order.
This situation poses the new challenge of plasticity-stability trade-off for training an agent who can adapt to task changes and retain acquired knowledge.
We propose a rehearsal-based continual diffusion model, called Continual diffuser (CoD), to endow the diffuser with the capabilities of quick adaptation (plasticity) and lasting retention (stability)
arXiv Detail & Related papers (2024-09-04T08:21:47Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - Exemplar-free Continual Representation Learning via Learnable Drift Compensation [24.114984920918715]
We propose Learnable Drift Compensation (LDC), which can effectively mitigate drift in any moving backbone.
LDC is fast and straightforward to integrate on top of existing continual learning approaches.
We achieve state-of-the-art performance in both supervised and semi-supervised settings.
arXiv Detail & Related papers (2024-07-11T14:23:08Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Forget but Recall: Incremental Latent Rectification in Continual Learning [21.600690867361617]
Intrinsic capability to continuously learn a changing data stream is a desideratum of deep neural networks (DNNs)
Existing Continual Learning approaches either retain exemplars for replay, regularize learning, or allocate dedicated capacity for new tasks.
This paper investigates an unexplored CL direction for incremental learning called Incremental Latent Rectification or ILR.
arXiv Detail & Related papers (2024-06-25T08:57:47Z) - Towards Cross-Domain Continual Learning [8.22291258264193]
We introduce a novel approach called Cross-Domain Continual Learning (CDCL)
Our method combines inter- and intra-task cross-attention mechanisms within a compact convolutional network.
By leveraging an intra-task-specific pseudo-labeling method, we ensure accurate input pairs for both labeled and unlabeled samples.
arXiv Detail & Related papers (2024-02-19T19:54:03Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Beyond Not-Forgetting: Continual Learning with Backward Knowledge
Transfer [39.99577526417276]
In continual learning (CL) an agent can improve the learning performance of both a new task and old' tasks.
Most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks.
We propose a new CL method with Backward knowlEdge tRansfer (CUBER) for a fixed capacity neural network without data replay.
arXiv Detail & Related papers (2022-11-01T23:55:51Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.