論文の概要: Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels
- arxiv url: http://arxiv.org/abs/2406.17415v2
- Date: Wed, 26 Jun 2024 08:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 12:30:50.215501
- Title: Layer-Wise Quantization: A Pragmatic and Effective Method for Quantizing LLMs Beyond Integer Bit-Levels
- Title(参考訳): レイヤワイズ量子化:整数ビットレベルを超えたLLMの実用的で効果的な量子化法
- Authors: Razvan-Gabriel Dumitru, Vikas Yadav, Rishabh Maheshwary, Paul-Ioan Clotan, Sathwik Tejaswi Madhusudhan, Mihai Surdeanu,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の異なる層を異なるビットレベルで定量化する,シンプルな変数量子化手法を提案する。
具体的には、最も重要な層を高いビット精度に量子化し、低いビットに対して重要でない層を定量化する。
重要度に応じて異なる層を異なるビットで定量化すると、より圧縮されたモデルサイズで性能低下が最小となることを示す。
- 参考スコア(独自算出の注目度): 20.706177044867797
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a simple variable quantization approach that quantizes different layers of a large language model (LLM) at different bit levels. Specifically, we quantize the most important layers to higher bit precision and less important layers to lower bits to achieve floating point quantization levels. We propose two effective strategies to measure the importance of layers within LLMs: the first measures the importance of a layer based on how different its output embeddings are from the input embeddings (the higher the better); the second estimates the importance of a layer using the number of layer weights that are much larger than average (the smaller the better). We show that quantizing different layers at varying bits according to our importance scores results in minimal performance drop with a far more compressed model size. Finally, we present several practical key takeaways from our variable layer-wise quantization experiments: (a) LLM performance under variable quantization remains close to the original model until 25-50% of layers are moved in lower quantization using our proposed ordering but only until 5-10% if moved using no specific ordering; (b) Quantizing LLMs to lower bits performs substantially better than pruning unless extreme quantization (2-bit) is used; and (c) Layer-wise quantization to lower bits works better in the case of larger LLMs with more layers compared to smaller LLMs with fewer layers. The code used to run the experiments is available at: https://github.com/RazvanDu/LayerwiseQuant.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の異なる層を異なるビットレベルで定量化する,シンプルな変数量子化手法を提案する。
具体的には、浮動小数点量子化レベルを達成するために、最も重要な層を高いビット精度に量子化し、より重要でない層を低いビットに量子化する。
LLM内の層の重要性を測定するための効果的な方法として,第1に,出力埋め込みと入力埋め込みとの違い(より高い)に基づいて,レイヤの重要性を測定する。
重要度に応じて異なる層を異なるビットで定量化すると、より圧縮されたモデルサイズで性能低下が最小となることを示す。
最後に、可変層ワイド量子化実験から得られたいくつかの実用的な重要な点について述べる。
(a) 可変量子化下のLLM性能は,提案した順序付けを用いて25~50%の層を低い量子化で移動させるまで原モデルに近いが,特定の順序付けを使わずに移動した場合は5~10%に留まる。
b)LLMを低ビットに量子化することは、極端量子化(2ビット)を使用しない限り、プルーニングよりも大幅に向上する。
(c)低ビットに対する層ワイド量子化は、より少ない層を持つ小さなLLMに比べて、より多くの層を持つ大きなLLMの場合より有効である。
実験に使用されたコードは、https://github.com/RazvanDu/LayerwiseQuant.comで公開されている。
関連論文リスト
- GPTQT: Quantize Large Language Models Twice to Push the Efficiency [1.3149617027696827]
本稿では,学習後量子化手法であるGPTQTを導入し,メモリ使用量の削減と処理速度の向上を図る。
重みの量子化誤差の最小化は非効率であり、過度に適合することを示した。
GPTQTは、最初は線形量子化を用いて重みを相対的に高いビットに量子化し、続いて得られた重みを低ビットバイナリ符号化に変換する。
論文 参考訳(メタデータ) (2024-07-03T08:08:01Z) - Delta-CoMe: Training-Free Delta-Compression with Mixed-Precision for Large Language Models [79.46938238953916]
多様なアプリケーションへの微調整された大規模言語モデル(LLM)は、複雑な要求を満たすために不可欠である。
近年の研究では、微調整LDMをベースモデルと対応するデルタウェイトに分解し、低ランクまたは低ビットのアプローチで圧縮してコストを削減することが示唆されている。
本研究では,従来の低ランク圧縮法と低ビット圧縮法がタスク固有の微調整LDMのモデル性能を著しく損なうことを観察する。
論文 参考訳(メタデータ) (2024-06-13T07:57:27Z) - The Impact of Quantization on Retrieval-Augmented Generation: An Analysis of Small LLMs [2.6968321526169503]
学習後の量子化は、Large Language Models (LLM) の計算需要を減らすが、その能力の一部を弱める可能性がある。
本稿では、量子化がより小さなLLMの検索強化生成(RAG)能力にどのように影響するかを考察する。
この結果から, 7B LLM がそのタスクをうまく実行した場合, 量子化ではその性能や長文推論能力が損なわれないことが判明した。
論文 参考訳(メタデータ) (2024-06-10T08:23:52Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - ShortGPT: Layers in Large Language Models are More Redundant Than You
Expect [39.791695729504006]
LLM(Large Language Models)の多くの層は高い類似性を示し、いくつかの層はネットワーク機能において無視できる役割を担っている。
レイヤ除去という,冗長なレイヤを直接削除する,簡単なプルーニング手法を提案する。
実験により,我々はShortGPT(ショートGPT)と呼ぶ手法を,モデルプルーニングにおける従来のSOTA(State-of-the-art)手法よりも大幅に優れていることを示した。
論文 参考訳(メタデータ) (2024-03-06T17:04:18Z) - FlattenQuant: Breaking Through the Inference Compute-bound for Large
Language Models with Per-tensor Quantization [6.931020818874328]
テンソル内の大きなチャネルを平らにすることでテンソルの最大値を大幅に低減し、最小の精度でテンソル当たりの量子化を実現するFlattenQuantという手法を提案する。
我々の研究は2$times$ speedupと2.3$times$ memory reduction for LLMs with negligible loss in accuracyを達成している。
論文 参考訳(メタデータ) (2024-02-28T02:00:34Z) - DB-LLM: Accurate Dual-Binarization for Efficient LLMs [83.70686728471547]
大規模言語モデル(LLM)は自然言語処理の分野を著しく進歩させてきた。
既存の超低ビット量子化は、常に深刻な精度低下を引き起こす。
本稿では,LLM,すなわちDB-LLMのための新しいデュアルバイナライズ手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T09:04:30Z) - OneBit: Towards Extremely Low-bit Large Language Models [66.29839811207617]
本稿では, LLMの重量行列を1ビットに大胆に定量化し, LLMの極低ビット幅展開への道を開く。
実験によると、OneBitは(LLaMAモデルの非量子化性能の少なくとも81%)優れたパフォーマンスを、堅牢なトレーニングプロセスで達成している。
論文 参考訳(メタデータ) (2024-02-17T14:26:57Z) - BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [53.31402059062365]
BiLLMは、事前訓練された大規模言語モデルに適した1ビット後のトレーニング後の量子化スキームである。
LLaMA2-70Bの8.41パープレキシティは、様々なLLMファミリーで1.08ビットの重みしか持たない。
論文 参考訳(メタデータ) (2024-02-06T09:26:34Z) - Revisiting Block-based Quantisation: What is Important for Sub-8-bit LLM
Inference? [21.243853199880807]
大規模言語モデル(LLM)の統計的および学習特性について検討する。
ブロック量子化(ブロック量子化)を LLM に適用する。
ほぼロスレスで量子化された6ビットのLSMは、float32ベースラインよりも19倍高い算術密度と5倍のメモリ密度を実現しています。
論文 参考訳(メタデータ) (2023-10-08T09:05:14Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。