Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes
- URL: http://arxiv.org/abs/2406.17438v1
- Date: Tue, 25 Jun 2024 10:20:44 GMT
- Title: Implicit-Zoo: A Large-Scale Dataset of Neural Implicit Functions for 2D Images and 3D Scenes
- Authors: Qi Ma, Danda Pani Paudel, Ender Konukoglu, Luc Van Gool,
- Abstract summary: "Implicit-Zoo" is a large-scale dataset requiring thousands of GPU training days to facilitate research and development in this field.
We showcase two immediate benefits as it enables to: (1) learn token locations for transformer models; (2) directly regress 3D cameras poses of 2D images with respect to NeRF models.
This in turn leads to an improved performance in all three task of image classification, semantic segmentation, and 3D pose regression, thereby unlocking new avenues for research.
- Score: 65.22070581594426
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural implicit functions have demonstrated significant importance in various areas such as computer vision, graphics. Their advantages include the ability to represent complex shapes and scenes with high fidelity, smooth interpolation capabilities, and continuous representations. Despite these benefits, the development and analysis of implicit functions have been limited by the lack of comprehensive datasets and the substantial computational resources required for their implementation and evaluation. To address these challenges, we introduce "Implicit-Zoo": a large-scale dataset requiring thousands of GPU training days designed to facilitate research and development in this field. Our dataset includes diverse 2D and 3D scenes, such as CIFAR-10, ImageNet-1K, and Cityscapes for 2D image tasks, and the OmniObject3D dataset for 3D vision tasks. We ensure high quality through strict checks, refining or filtering out low-quality data. Using Implicit-Zoo, we showcase two immediate benefits as it enables to: (1) learn token locations for transformer models; (2) directly regress 3D cameras poses of 2D images with respect to NeRF models. This in turn leads to an improved performance in all three task of image classification, semantic segmentation, and 3D pose regression, thereby unlocking new avenues for research.
Related papers
- ImOV3D: Learning Open-Vocabulary Point Clouds 3D Object Detection from Only 2D Images [19.02348585677397]
Open-vocabulary 3D object detection (OV-3Det) aims to generalize beyond the limited number of base categories labeled during the training phase.
The biggest bottleneck is the scarcity of annotated 3D data, whereas 2D image datasets are abundant and richly annotated.
We propose a novel framework ImOV3D to leverage pseudo multimodal representation containing both images and point clouds (PC) to close the modality gap.
arXiv Detail & Related papers (2024-10-31T15:02:05Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
Current visual foundation models are trained purely on unstructured 2D data.
We show that fine-tuning on 3D-aware data improves the quality of emerging semantic features.
arXiv Detail & Related papers (2024-07-29T17:59:21Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
This paper addresses the limitations of current datasets for 3D vision tasks in terms of accuracy, size, realism, and suitable imaging modalities for photometrically challenging objects.
We propose a novel annotation and acquisition pipeline that enhances existing 3D perception and 6D object pose datasets.
arXiv Detail & Related papers (2023-08-21T10:38:32Z) - Interpretable 2D Vision Models for 3D Medical Images [47.75089895500738]
This study proposes a simple approach of adapting 2D networks with an intermediate feature representation for processing 3D images.
We show on all 3D MedMNIST datasets as benchmark and two real-world datasets consisting of several hundred high-resolution CT or MRI scans that our approach performs on par with existing methods.
arXiv Detail & Related papers (2023-07-13T08:27:09Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.