ImOV3D: Learning Open-Vocabulary Point Clouds 3D Object Detection from Only 2D Images
- URL: http://arxiv.org/abs/2410.24001v1
- Date: Thu, 31 Oct 2024 15:02:05 GMT
- Title: ImOV3D: Learning Open-Vocabulary Point Clouds 3D Object Detection from Only 2D Images
- Authors: Timing Yang, Yuanliang Ju, Li Yi,
- Abstract summary: Open-vocabulary 3D object detection (OV-3Det) aims to generalize beyond the limited number of base categories labeled during the training phase.
The biggest bottleneck is the scarcity of annotated 3D data, whereas 2D image datasets are abundant and richly annotated.
We propose a novel framework ImOV3D to leverage pseudo multimodal representation containing both images and point clouds (PC) to close the modality gap.
- Score: 19.02348585677397
- License:
- Abstract: Open-vocabulary 3D object detection (OV-3Det) aims to generalize beyond the limited number of base categories labeled during the training phase. The biggest bottleneck is the scarcity of annotated 3D data, whereas 2D image datasets are abundant and richly annotated. Consequently, it is intuitive to leverage the wealth of annotations in 2D images to alleviate the inherent data scarcity in OV-3Det. In this paper, we push the task setup to its limits by exploring the potential of using solely 2D images to learn OV-3Det. The major challenges for this setup is the modality gap between training images and testing point clouds, which prevents effective integration of 2D knowledge into OV-3Det. To address this challenge, we propose a novel framework ImOV3D to leverage pseudo multimodal representation containing both images and point clouds (PC) to close the modality gap. The key of ImOV3D lies in flexible modality conversion where 2D images can be lifted into 3D using monocular depth estimation and can also be derived from 3D scenes through rendering. This allows unifying both training images and testing point clouds into a common image-PC representation, encompassing a wealth of 2D semantic information and also incorporating the depth and structural characteristics of 3D spatial data. We carefully conduct such conversion to minimize the domain gap between training and test cases. Extensive experiments on two benchmark datasets, SUNRGBD and ScanNet, show that ImOV3D significantly outperforms existing methods, even in the absence of ground truth 3D training data. With the inclusion of a minimal amount of real 3D data for fine-tuning, the performance also significantly surpasses previous state-of-the-art. Codes and pre-trained models are released on the https://github.com/yangtiming/ImOV3D.
Related papers
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDense is a framework for 3D pre-training utilizing existing 2D networks and large-scale multi-view datasets.
We propose a novel 2D-3D joint training scheme to extract co-embedded 2D and 3D features in an end-to-end pipeline.
arXiv Detail & Related papers (2024-08-30T05:57:01Z) - OV-Uni3DETR: Towards Unified Open-Vocabulary 3D Object Detection via Cycle-Modality Propagation [67.56268991234371]
OV-Uni3DETR achieves the state-of-the-art performance on various scenarios, surpassing existing methods by more than 6% on average.
Code and pre-trained models will be released later.
arXiv Detail & Related papers (2024-03-28T17:05:04Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks.
We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss.
Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks.
arXiv Detail & Related papers (2023-06-05T03:14:54Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDAR-produced point clouds are the major source for most state-of-the-art 3D object detectors.
Small, distant, and incomplete objects with sparse or few points are often hard to detect.
We present Sparse2Dense, a new framework to efficiently boost 3D detection performance by learning to densify point clouds in latent space.
arXiv Detail & Related papers (2022-11-23T16:01:06Z) - Super Images -- A New 2D Perspective on 3D Medical Imaging Analysis [0.0]
We present a simple yet effective 2D method to handle 3D data while efficiently embedding the 3D knowledge during training.
Our method generates a super-resolution image by stitching slices side by side in the 3D image.
While attaining equal, if not superior, results to 3D networks utilizing only 2D counterparts, the model complexity is reduced by around threefold.
arXiv Detail & Related papers (2022-05-05T09:59:03Z) - Data Efficient 3D Learner via Knowledge Transferred from 2D Model [30.077342050473515]
We deal with the data scarcity challenge of 3D tasks by transferring knowledge from strong 2D models via RGB-D images.
We utilize a strong and well-trained semantic segmentation model for 2D images to augment RGB-D images with pseudo-label.
Our method already outperforms existing state-of-the-art that is tailored for 3D label efficiency.
arXiv Detail & Related papers (2022-03-16T09:14:44Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.