論文の概要: Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model
- arxiv url: http://arxiv.org/abs/2406.17442v1
- Date: Tue, 25 Jun 2024 10:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:42:03.070479
- Title: Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model
- Title(参考訳): Mamba24/8D: 状態空間モデルによるポイントクラウドにおけるグローバルインタラクションの強化
- Authors: Zhuoyuan Li, Yubo Ai, Jiahao Lu, ChuXin Wang, Jiacheng Deng, Hanzhi Chang, Yanzhe Liang, Wenfei Yang, Shifeng Zhang, Tianzhu Zhang,
- Abstract要約: 私たちは、ポイントクラウドドメインにSSMベースのアーキテクチャであるMambaを紹介します。
本稿では,線形複雑性下でのグローバルモデリング能力の強いMamba24/8Dを提案する。
Mamba24/8Dは、複数の3Dポイントクラウドセグメンテーションタスクにおける技術結果の状態を取得する。
- 参考スコア(独自算出の注目度): 37.375866491592305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have demonstrated impressive results for 3D point cloud semantic segmentation. However, the quadratic complexity of transformer makes computation cost high, limiting the number of points that can be processed simultaneously and impeding the modeling of long-range dependencies. Drawing inspiration from the great potential of recent state space models (SSM) for long sequence modeling, we introduce Mamba, a SSM-based architecture, to the point cloud domain and propose Mamba24/8D, which has strong global modeling capability under linear complexity. Specifically, to make disorderness of point clouds fit in with the causal nature of Mamba, we propose a multi-path serialization strategy applicable to point clouds. Besides, we propose the ConvMamba block to compensate for the shortcomings of Mamba in modeling local geometries and in unidirectional modeling. Mamba24/8D obtains state of the art results on several 3D point cloud segmentation tasks, including ScanNet v2, ScanNet200 and nuScenes, while its effectiveness is validated by extensive experiments.
- Abstract(参考訳): トランスフォーマーは、3Dポイントクラウドセマンティックセグメンテーションの印象的な結果を示した。
しかし、変換器の二次的な複雑さは計算コストを高くし、同時に処理できる点の数を制限するとともに、長距離依存のモデリングを妨げる。
長周期モデリングのための最近の状態空間モデル(SSM)の大きな可能性からインスピレーションを得て、SSMベースのアーキテクチャであるMambaをポイントクラウドドメインに導入し、線形複雑性の下で強力なグローバルモデリング機能を持つMamba24/8Dを提案する。
具体的には,マンバの因果性に適合する点雲の不規則性を実現するために,点雲に適用可能な多経路シリアライズ戦略を提案する。
さらに,局所的なジオメトリのモデル化や一方向モデリングにおいて,Mambaの欠点を補うためのConvMambaブロックを提案する。
Mamba24/8Dは、ScanNet v2、ScanNet200、nuScenesなど、いくつかの3Dポイントクラウドセグメンテーションタスクの最先端結果を取得し、その有効性は広範な実験によって検証されている。
関連論文リスト
- Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model [9.718016281821471]
シリアライズされたポイントクラウドマンバモデル(シリアライズされたポイントマンバ)を開発した。
自然言語処理におけるMambaモデルの成功に触発されて,Serialized Point Cloud Mamba Modelを提案する。
Scannetでは76.8 mIoU、S3DISでは70.3 mIoUが達成された。
論文 参考訳(メタデータ) (2024-07-17T05:26:58Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
状態空間モデル(SSM)に基づくMambaモデルは、線形複雑性のみを持つ複数の領域でTransformerより優れている。
我々は,局所的特徴抽出を強化するために,ポイントクラウド学習に適した状態空間モデルであるMamba3Dを提案する。
論文 参考訳(メタデータ) (2024-04-23T12:20:27Z) - Point Mamba: A Novel Point Cloud Backbone Based on State Space Model with Octree-Based Ordering Strategy [15.032048930130614]
我々は、因果性を考慮した注文機構を備えた、新しいSSMベースのポイントクラウド処理バックボーン、Point Mambaを提案する。
本手法は, 変圧器をベースとした変圧器と比較して, 93.4%の精度と75.7mIOUの精度を実現している。
提案手法は,SSMが点雲理解において一般的なバックボーンとして機能する可能性を示す。
論文 参考訳(メタデータ) (2024-03-11T07:07:39Z) - The Hidden Attention of Mamba Models [54.50526986788175]
Mamba層は、複数のドメインをモデリングするのに非常に効果的である効率的な選択状態空間モデル(SSM)を提供する。
このようなモデルを注意駆動モデルとみなすことができる。
この新たな視点は、トランスの自己保持層のメカニズムを経験的かつ理論的に比較することを可能にする。
論文 参考訳(メタデータ) (2024-03-03T18:58:21Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [64.85865751243448]
この研究は、ポイントクラウド分析にそのようなアーキテクチャを適用することに焦点を当てている。
我々は,マンバをベースとした点雲法が,変圧器や多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanObjectNN、ModelNet40、ShapeNetPart、S3DISデータセット上で新しいSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Variational Relational Point Completion Network for Robust 3D
Classification [59.80993960827833]
可変点雲補完法は、局所的な詳細を欠くため、大域的な形状の骨格を生成する傾向がある。
本稿では2つの魅力的な特性を持つ変分フレームワークであるポイントコンプリートネットワーク(VRCNet)を提案する。
VRCNetは、現実世界のポイントクラウドスキャンにおいて、非常に一般化性と堅牢性を示している。
論文 参考訳(メタデータ) (2023-04-18T17:03:20Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNetは、マッピングネットワークを使用して高忠実度および3Dポイントクラウドを再構築し、生成することができる。
我々のフレームワークは、クラウドの再構築と生成タスクにおいて、様々なメトリクスで同等の最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2023-03-28T08:21:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。