Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
- URL: http://arxiv.org/abs/2406.17465v2
- Date: Sun, 29 Sep 2024 15:26:59 GMT
- Title: Enhancing Tool Retrieval with Iterative Feedback from Large Language Models
- Authors: Qiancheng Xu, Yongqi Li, Heming Xia, Wenjie Li,
- Abstract summary: Large language models (LLMs) can effectively handle a certain amount of tools through in-context learning or fine-tuning.
In real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component.
We propose to enhance tool retrieval with iterative feedback from the large language model.
- Score: 9.588592185027455
- License:
- Abstract: Tool learning aims to enhance and expand large language models' (LLMs) capabilities with external tools, which has gained significant attention recently. Current methods have shown that LLMs can effectively handle a certain amount of tools through in-context learning or fine-tuning. However, in real-world scenarios, the number of tools is typically extensive and irregularly updated, emphasizing the necessity for a dedicated tool retrieval component. Tool retrieval is nontrivial due to the following challenges: 1) complex user instructions and tool descriptions; 2) misalignment between tool retrieval and tool usage models. To address the above issues, we propose to enhance tool retrieval with iterative feedback from the large language model. Specifically, we prompt the tool usage model, i.e., the LLM, to provide feedback for the tool retriever model in multi-round, which could progressively improve the tool retriever's understanding of instructions and tools and reduce the gap between the two standalone components. We build a unified and comprehensive benchmark to evaluate tool retrieval models. The extensive experiments indicate that our proposed approach achieves advanced performance in both in-domain evaluation and out-of-domain evaluation.
Related papers
- NesTools: A Dataset for Evaluating Nested Tool Learning Abilities of Large Language Models [10.344854970262984]
We introduce NesTools to bridge the gap in comprehensive nested tool learning evaluations.
NesTools comprises a novel automatic data generation method to construct large-scale nested tool calls.
With manual review and refinement, the dataset is in high quality and closely aligned with real-world scenarios.
arXiv Detail & Related papers (2024-10-15T17:33:43Z) - Efficient and Scalable Estimation of Tool Representations in Vector Space [34.767193045989515]
We present a framework for generating synthetic data for tool retrieval applications and an efficient data-driven tool retrieval strategy using small encoder models.
We create ToolBank, a new tool retrieval dataset that reflects real human user usages.
With these new methods, we achieve improvements of up to 27.28 in Recall@K on the ToolBench dataset and 30.5 in Recall@K on ToolBank.
arXiv Detail & Related papers (2024-09-02T19:39:24Z) - Re-Invoke: Tool Invocation Rewriting for Zero-Shot Tool Retrieval [47.81307125613145]
Re-Invoke is an unsupervised tool retrieval method designed to scale effectively to large toolsets without training.
We employ a novel multi-view similarity ranking strategy based on intents to pinpoint the most relevant tools for each query.
Our evaluation demonstrates that Re-Invoke significantly outperforms state-of-the-art alternatives in both single-tool and multi-tool scenarios.
arXiv Detail & Related papers (2024-08-03T22:49:27Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
Language models (LMs) are powerful yet mostly for text generation tasks.
We provide a unified definition of tools as external programs used by LMs.
We empirically study the efficiency of various tooling methods.
arXiv Detail & Related papers (2024-03-18T17:20:07Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyTool is a framework transforming diverse and lengthy tool documentation into a unified and concise tool instruction.
It can significantly reduce token consumption and improve the performance of tool utilization in real-world scenarios.
arXiv Detail & Related papers (2024-01-11T15:45:11Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
Tools serve as pivotal interfaces that enable humans to understand and reshape the environment.
Existing tool learning methodologies induce large language models to utilize tools indiscriminately.
We propose Tool leaRning wIth exeCution fEedback (TRICE), a two-stage end-to-end framework that enables the model to continually learn through feedback derived from tool execution.
arXiv Detail & Related papers (2023-05-22T14:37:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.