Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger
- URL: http://arxiv.org/abs/2502.12961v1
- Date: Tue, 18 Feb 2025 15:45:01 GMT
- Title: Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger
- Authors: Wenjun Li, Dexun Li, Kuicai Dong, Cong Zhang, Hao Zhang, Weiwen Liu, Yasheng Wang, Ruiming Tang, Yong Liu,
- Abstract summary: We propose MeCo, an adaptive decision-making strategy for external tool use.
MeCo captures high-level cognitive signals in the representation space, guiding when to invoke tools.
Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making.
- Score: 49.81945268343162
- License:
- Abstract: Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or real-time data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, weather/map apps), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues:(1) increased delays due to unnecessary tool calls, and (2) potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, representing the model's awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making across multiple base models and benchmarks.
Related papers
- Learning Evolving Tools for Large Language Models [44.25796648300785]
Tool learning enables large language models (LLMs) to interact with external tools and APIs.
ToolEVO is a novel framework designed to enhance the adaptive and reflective capabilities of LLMs against tool variability.
arXiv Detail & Related papers (2024-10-09T07:14:45Z) - LLM With Tools: A Survey [0.0]
This paper delves into the methodology,challenges, and developments in the realm of teaching LLMs to use external tools.
We introduce a standardized paradigm for tool integration guided by a series of functions that map user instructions to actionable plans.
Our exploration reveals the various challenges encountered, such as tool invocation timing, selection accuracy, and the need for robust reasoning processes.
arXiv Detail & Related papers (2024-09-24T14:08:11Z) - Learning to Ask: When LLM Agents Meet Unclear Instruction [55.65312637965779]
Large language models (LLMs) can leverage external tools for addressing a range of tasks unattainable through language skills alone.
We evaluate the performance of LLMs tool-use under imperfect instructions, analyze the error patterns, and build a challenging tool-use benchmark called Noisy ToolBench.
We propose a novel framework, Ask-when-Needed (AwN), which prompts LLMs to ask questions to users whenever they encounter obstacles due to unclear instructions.
arXiv Detail & Related papers (2024-08-31T23:06:12Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain (ATC) is a framework that enables the large language models (LLMs) to act as a multi-tool user.
To scale up the scope of the tools, we next propose a black-box probing method.
For a comprehensive evaluation, we build a challenging benchmark named ToolFlow.
arXiv Detail & Related papers (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
Real-world systems often incorporate a wide array of tools, making it impractical to input all tools into Large Language Models.
Existing tool retrieval methods primarily focus on semantic matching between user queries and tool descriptions.
We propose a novel modelagnostic COllaborative Learning-based Tool Retrieval approach, COLT, which captures not only the semantic similarities between user queries and tool descriptions but also takes into account the collaborative information of tools.
arXiv Detail & Related papers (2024-05-25T06:41:23Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
We propose a decision-aware and generalizable tool-usage framework (DEER)
Specifically, we first construct the tool-usage samples with multiple decision branches via an automatic generation pipeline.
Our proposed DEER is effective and significantly outperforms baselines across various datasets.
arXiv Detail & Related papers (2024-02-26T16:11:03Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraTool is a novel benchmark designed to improve and evaluate Large Language Models' ability in tool utilization.
It emphasizes real-world complexities, demanding accurate, multi-step planning for effective problem-solving.
A key feature of UltraTool is its independent evaluation of planning with natural language, which happens before tool usage.
arXiv Detail & Related papers (2024-01-30T16:52:56Z) - Large Language Models as Tool Makers [85.00361145117293]
We introduce a closed-loop framework, referred to as LLMs A s Tool Makers (LATM), where LLMs create their own reusable tools for problem-solving.
Our approach consists of two phases: 1) tool making: an LLM acts as the tool maker that crafts tools for a set of tasks. 2) tool using: another LLM acts as the tool user, which applies the tool built by the tool maker for problem-solving.
arXiv Detail & Related papers (2023-05-26T17:50:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.