WAVE: Weight Templates for Adaptive Initialization of Variable-sized Models
- URL: http://arxiv.org/abs/2406.17503v3
- Date: Sat, 15 Mar 2025 17:21:38 GMT
- Title: WAVE: Weight Templates for Adaptive Initialization of Variable-sized Models
- Authors: Fu Feng, Yucheng Xie, Jing Wang, Xin Geng,
- Abstract summary: WAVE is a novel approach to initializing variable-sized models.<n>WAVE employs shared, size-agnostic weight templates alongside size-specific weight scalers.<n>WAVE achieves state-of-the-art performance in initializing models of various depth and width.
- Score: 37.97945436202779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing complexity of model parameters underscores the significance of pre-trained models. However, deployment constraints often necessitate models of varying sizes, exposing limitations in the conventional pre-training and fine-tuning paradigm, particularly when target model sizes are incompatible with pre-trained ones. To address this challenge, we propose WAVE, a novel approach that reformulates variable-sized model initialization from a multi-task perspective, where initializing each model size is treated as a distinct task. WAVE employs shared, size-agnostic weight templates alongside size-specific weight scalers to achieve consistent initialization across various model sizes. These weight templates, constructed within the Learngene framework, integrate knowledge from pre-trained models through a distillation process constrained by Kronecker-based rules. Target models are then initialized by concatenating and weighting these templates, with adaptive connection rules established by lightweight weight scalers, whose parameters are learned from minimal training data. Extensive experiments demonstrate the efficiency of WAVE, achieving state-of-the-art performance in initializing models of various depth and width. The knowledge encapsulated in weight templates is also task-agnostic, allowing for seamless transfer across diverse downstream datasets. Code will be made available at https://github.com/fu-feng/WAVE.
Related papers
- Model Assembly Learning with Heterogeneous Layer Weight Merging [57.8462476398611]
We introduce Model Assembly Learning (MAL), a novel paradigm for model merging.
MAL integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities.
arXiv Detail & Related papers (2025-03-27T16:21:53Z) - FINE: Factorizing Knowledge for Initialization of Variable-sized Diffusion Models [35.40065954148091]
FINE is a method based on the Learngene framework to initializing downstream networks leveraging pre-trained models.
It decomposes pre-trained knowledge into the product of matrices (i.e., $U$, $Sigma$, and $V$), where $U$ and $V$ are shared across network blocks as learngenes''
It consistently outperforms direct pre-training, particularly for smaller models, achieving state-of-the-art results across variable model sizes.
arXiv Detail & Related papers (2024-09-28T08:57:17Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Exploring Learngene via Stage-wise Weight Sharing for Initializing Variable-sized Models [40.21274215353816]
We introduce the Learngene framework, which learns one compact part termed as learngene from a large well-trained model.
We then expand these learngene layers containing stage information at their corresponding stage to initialize models of variable depths.
Experiments on ImageNet-1K demonstrate that SWS achieves consistent better performance compared to many models trained from scratch.
arXiv Detail & Related papers (2024-04-25T06:04:34Z) - Continuous Language Model Interpolation for Dynamic and Controllable Text Generation [7.535219325248997]
We focus on the challenging case where the model must dynamically adapt to diverse -- and often changing -- user preferences.
We leverage adaptation methods based on linear weight, casting them as continuous multi-domain interpolators.
We show that varying the weights yields predictable and consistent change in the model outputs.
arXiv Detail & Related papers (2024-04-10T15:55:07Z) - Model Stock: All we need is just a few fine-tuned models [34.449901046895185]
This paper introduces an efficient fine-tuning method for large pre-trained models, offering strong in-distribution (ID) and out-of-distribution (OOD) performance.
We employ significantly fewer models to achieve final weights yet yield superior accuracy.
We demonstrate the efficacy of Model Stock with fine-tuned models based upon pre-trained CLIP architectures.
arXiv Detail & Related papers (2024-03-28T15:57:20Z) - Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks [12.146530928616386]
A common approach for targeted problems involves fine-tuning pre-trained foundation models for specific target tasks.
This work focuses on the problem of merging multiple fine-tunings of the same foundation model derived from a spectrum of auxiliary tasks.
We introduce a new simple method, Model Breadcrumbs, which consists of a sparsely defined weight set that guides model adaptation within the weight space of a pre-trained model.
arXiv Detail & Related papers (2023-12-11T19:10:55Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Revealing Secrets From Pre-trained Models [2.0249686991196123]
Transfer-learning has been widely adopted in many emerging deep learning algorithms.
We show that pre-trained models and fine-tuned models have significantly high similarities in weight values.
We propose a new model extraction attack that reveals the model architecture and the pre-trained model used by the black-box victim model.
arXiv Detail & Related papers (2022-07-19T20:19:03Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
We propose a novel paradigm of incorporating model-specific prior knowledge into Structurals and using them to train generic (simple) models.
As an implementation, we propose a novel methodology to add prior knowledge by modifying the gradients according to a set of model-specific hyper- parameters.
For a simple model trained with a Repr, we focus on a VGG-style plain model and showcase that such a simple model trained with a Repr, which is referred to as Rep-VGG, performs on par with the recent well-designed models.
arXiv Detail & Related papers (2022-05-30T16:55:59Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.