Enhancing Explainability of Knowledge Learning Paths: Causal Knowledge Networks
- URL: http://arxiv.org/abs/2406.17518v2
- Date: Wed, 26 Jun 2024 01:25:44 GMT
- Title: Enhancing Explainability of Knowledge Learning Paths: Causal Knowledge Networks
- Authors: Yuang Wei, Yizhou Zhou, Yuan-Hao Jiang, Bo Jiang,
- Abstract summary: A reliable knowledge structure is a prerequisite for building effective adaptive learning systems.
We propose a method for constructing causal knowledge networks.
We also introduce a dependable knowledge-learning path recommendation technique.
- Score: 6.792267409396434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A reliable knowledge structure is a prerequisite for building effective adaptive learning systems and intelligent tutoring systems. Pursuing an explainable and trustworthy knowledge structure, we propose a method for constructing causal knowledge networks. This approach leverages Bayesian networks as a foundation and incorporates causal relationship analysis to derive a causal network. Additionally, we introduce a dependable knowledge-learning path recommendation technique built upon this framework, improving teaching and learning quality while maintaining transparency in the decision-making process.
Related papers
- Causal discovery using dynamically requested knowledge [7.904709685523615]
Causal Bayesian Networks (CBNs) are an important tool for reasoning under uncertainty in complex real-world systems.
We investigate a novel approach where the structure learning algorithm itself dynamically identifies and requests knowledge for relationships that the algorithm identifies as uncertain.
We show that it offers considerable gains in structural accuracy, which are generally larger than those offered by existing approaches for integrating knowledge.
arXiv Detail & Related papers (2023-10-17T11:21:23Z) - Deciphering Raw Data in Neuro-Symbolic Learning with Provable Guarantees [17.58485742162185]
Neuro-symbolic hybrid systems are promising for integrating machine learning and symbolic reasoning.
It remains unclear why a hybrid system succeeds for a specific task and when it may fail given a different knowledge base.
We introduce a novel way of characterising supervision signals from a knowledge base, and establish a criterion for determining the knowledge's efficacy in facilitating successful learning.
arXiv Detail & Related papers (2023-08-21T06:04:53Z) - Causal Reinforcement Learning: A Survey [57.368108154871]
Reinforcement learning is an essential paradigm for solving sequential decision problems under uncertainty.
One of the main obstacles is that reinforcement learning agents lack a fundamental understanding of the world.
Causality offers a notable advantage as it can formalize knowledge in a systematic manner.
arXiv Detail & Related papers (2023-07-04T03:00:43Z) - Worth of knowledge in deep learning [3.132595571344153]
We present a framework inspired by interpretable machine learning to evaluate the worth of knowledge.
Our findings elucidate the complex relationship between data and knowledge, including dependence, synergistic, and substitution effects.
Our model-agnostic framework can be applied to a variety of common network architectures, providing a comprehensive understanding of the role of prior knowledge in deep learning models.
arXiv Detail & Related papers (2023-07-03T02:25:19Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
We propose a UNified knowledge inTERface, UNTER, to provide a unified perspective to exploit both structured knowledge and unstructured knowledge.
With both forms of knowledge injected, UNTER gains continuous improvements on a series of knowledge-driven NLP tasks.
arXiv Detail & Related papers (2023-05-02T17:33:28Z) - Thrill-K Architecture: Towards a Solution to the Problem of Knowledge
Based Understanding [0.9390008801320021]
We introduce a classification of hybrid systems which, based on an analysis of human knowledge and intelligence, combines neural learning with various types of knowledge and knowledge sources.
We present the Thrill-K architecture as a prototypical solution for integrating instantaneous knowledge, standby knowledge and external knowledge sources in a framework capable of inference, learning and intelligent control.
arXiv Detail & Related papers (2023-02-28T20:39:35Z) - Learning by Applying: A General Framework for Mathematical Reasoning via
Enhancing Explicit Knowledge Learning [47.96987739801807]
We propose a framework to enhance existing models (backbones) in a principled way by explicit knowledge learning.
In LeAp, we perform knowledge learning in a novel problem-knowledge-expression paradigm.
We show that LeAp improves all backbones' performances, learns accurate knowledge, and achieves a more interpretable reasoning process.
arXiv Detail & Related papers (2023-02-11T15:15:41Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
We propose a model-agnostic meta knowledge distillation method under the teacher-student architecture for the single image super-resolution task.
Experiments conducted on various single image super-resolution datasets demonstrate that our proposed method outperforms existing defined knowledge representation related distillation methods.
arXiv Detail & Related papers (2022-07-18T02:41:04Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Coarse-to-Careful: Seeking Semantic-related Knowledge for Open-domain
Commonsense Question Answering [12.406729445165857]
It is prevalent to utilize external knowledge to help machine answer questions that need background commonsense.
We propose a semantic-driven knowledge-aware QA framework, which controls the knowledge injection in a coarse-to-careful fashion.
arXiv Detail & Related papers (2021-07-04T10:56:36Z) - Contextualized Knowledge-aware Attentive Neural Network: Enhancing
Answer Selection with Knowledge [77.77684299758494]
We extensively investigate approaches to enhancing the answer selection model with external knowledge from knowledge graph (KG)
First, we present a context-knowledge interaction learning framework, Knowledge-aware Neural Network (KNN), which learns the QA sentence representations by considering a tight interaction with the external knowledge from KG and the textual information.
To handle the diversity and complexity of KG information, we propose a Contextualized Knowledge-aware Attentive Neural Network (CKANN), which improves the knowledge representation learning with structure information via a customized Graph Convolutional Network (GCN) and comprehensively learns context-based and knowledge-based sentence representation via
arXiv Detail & Related papers (2021-04-12T05:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.