論文の概要: Minimal Interaction Separated Tuning: A New Paradigm for Visual Adaptation
- arxiv url: http://arxiv.org/abs/2406.17559v3
- Date: Tue, 27 May 2025 09:30:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:57.989177
- Title: Minimal Interaction Separated Tuning: A New Paradigm for Visual Adaptation
- Title(参考訳): 最小インタラクションチューニング:ビジュアル適応のための新しいパラダイム
- Authors: Ningyuan Tang, Minghao Fu, Jianxin Wu,
- Abstract要約: 分離チューニングと呼ばれる新しい視覚適応パラダイムについて検討する。
分離されたチューニングは、大規模な事前訓練されたモデルを、強力なクラウドサーバ上で動作するスタンドアロンの機能抽出器として扱う。
我々は,MIST(Minimmal Interaction Separated Tuning)を提案し,事前学習したモデルから得られた中間的特徴の総和が最小限の情報伝達と高適応性を有することを示した。
- 参考スコア(独自算出の注目度): 11.656632975033476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid scaling of large vision pretrained models makes fine-tuning tasks more and more difficult on devices with low computational resources. We explore a new visual adaptation paradigm called separated tuning, which treats large pretrained models as standalone feature extractors that run on powerful cloud servers. The fine-tuning carries out on devices which possess only low computational resources (slow CPU, no GPU, small memory, etc.) Existing methods that are potentially suitable for our separated tuning paradigm are discussed. But, three major drawbacks hinder their application in separated tuning: low adaptation capability, large adapter network, and in particular, high information transfer overhead. To address these issues, we propose Minimal Interaction Separated Tuning, or MIST, which reveals that the sum of intermediate features from pretrained models not only has minimal information transfer but also has high adaptation capability. With a lightweight attention-based adaptor network, MIST achieves information transfer efficiency, parameter efficiency, computational and memory efficiency, and at the same time demonstrates competitive results on various visual adaptation benchmarks.
- Abstract(参考訳): 大規模ビジョン事前学習モデルの迅速なスケーリングにより、計算資源の少ないデバイスでは、微調整タスクがますます困難になる。
我々は、大規模な事前訓練されたモデルを、強力なクラウドサーバ上で動作するスタンドアロンの機能抽出器として扱う、分離チューニングと呼ばれる新しいビジュアル適応パラダイムを探求する。
この微調整は、低計算リソース(低CPU、GPU、小メモリなど)しか持たないデバイスに対して行われる。
しかし、3つの大きな欠点は、低い適応能力、大きなアダプタネットワーク、特に高い情報転送オーバーヘッドという、分離されたチューニングのアプリケーションを妨げる。
これらの問題に対処するため,MIST (Minimal Interaction Separated Tuning) を提案する。
軽量なアダプタネットワークにより、MISTは情報伝達効率、パラメータ効率、計算およびメモリ効率を達成し、同時に様々な視覚適応ベンチマークで競合結果を示す。
関連論文リスト
- RECAST: Reparameterized, Compact weight Adaptation for Sequential Tasks [16.512587987753967]
RECASTはタスク固有のトレーニング可能なパラメータを50未満に劇的に削減する新しい手法である。
本稿では,RECASTが様々なスケール,アーキテクチャ,パラメータ空間において,最先端の技術を最大3%向上させることを示す。
論文 参考訳(メタデータ) (2024-11-25T19:08:38Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - ReduceFormer: Attention with Tensor Reduction by Summation [4.985969607297595]
注意を払って効率よく最適化されたモデルのファミリーであるReduceeFormerを紹介します。
ReduceFormerは、reduceやement-wise multiplicationといった単純な操作のみを活用するため、アーキテクチャが大幅に単純化され、推論性能が向上した。
提案するモデルファミリは,計算資源とメモリ帯域幅が限られているエッジデバイスや,高いスループットを求めるクラウドコンピューティングに適している。
論文 参考訳(メタデータ) (2024-06-11T17:28:09Z) - Mini but Mighty: Finetuning ViTs with Mini Adapters [7.175668563148084]
アダプタの寸法が小さい場合、アダプタは性能が悪くなります。
この問題に対処するトレーニングフレームワークMiMiを提案する。
本手法は,精度と訓練されたパラメータの最良のトレードオフを見つける上で,既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-07T10:41:27Z) - Efficient Adaptation of Large Vision Transformer via Adapter
Re-Composing [8.88477151877883]
高容量事前学習モデルはコンピュータビジョンにおける問題解決に革命をもたらした。
本稿では,効率的な事前学習モデル適応に対処する新しい適応型再コンパイル(ARC)戦略を提案する。
提案手法は適応パラメータの再利用可能性について考察し,パラメータ共有方式を提案する。
論文 参考訳(メタデータ) (2023-10-10T01:04:15Z) - Consolidator: Mergeable Adapter with Grouped Connections for Visual
Adaptation [53.835365470800916]
視覚変換器の知識を効率よく効果的に伝達する方法を示す。
調整可能なパラメータの小さなセットを追加して,事前学習モデルを変更するコンソリケータを提案する。
我々のコンソリエータは、0.35%のパラメータで完全な微調整よりも最大7.56の精度で到達できる。
論文 参考訳(メタデータ) (2023-04-30T23:59:02Z) - Tiny-Attention Adapter: Contexts Are More Important Than the Number of
Parameters [25.958600375299735]
Adapter-tuningは、トレーニング済みの言語モデルを、少数の新しいパラメータの追加とチューニングによって下流タスクに転送するパラダイムである。
本稿では, 極小アテンション, 極小アテンション・アテンション・アテンション・アテンション・アテンションをアダプタとして用いることの有効性について検討する。
私たちの小さなアテンションアダプタは、他のすべての位置にある隠された状態に直接条件付けられた各位置の隠された状態を変更することを学習します。
論文 参考訳(メタデータ) (2022-10-18T15:20:44Z) - Pro-tuning: Unified Prompt Tuning for Vision Tasks [133.12978197265596]
ファインチューニングは、トレーニング済みの視覚モデルを利用して下流タスクを実行するデファクトアプローチである。
本研究では,様々な下流視覚タスクに凍結視覚モデルを適用するために,パラメータ効率のよいプロンプトチューニング(Pro-tuning)を提案する。
論文 参考訳(メタデータ) (2022-07-28T21:09:31Z) - AdaViT: Adaptive Tokens for Efficient Vision Transformer [91.88404546243113]
本稿では,視覚変換器(ViT)の推論コストを,複雑さの異なる画像に対して適応的に調整する手法であるAdaViTを紹介する。
AdaViTは、推論が進むにつれてネットワーク内で処理されるビジョントランスフォーマーのトークン数を自動で削減することで、これを実現する。
論文 参考訳(メタデータ) (2021-12-14T18:56:07Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - When Vision Transformers Outperform ResNets without Pretraining or
Strong Data Augmentations [111.44860506703307]
Vision Transformer (ViTs) と既存のVisionNetsは、ハンドワイヤ機能やインダクティブスループットを汎用神経アーキテクチャに置き換えようとしている。
本稿では、損失幾何学のレンズからViTとRes-Mixersを解析し、トレーニングおよび推論時のモデルのデータ効率を改善することを目的とする。
最初の数層では、スペーサー活動ニューロンの頑健性が改善していることが示されている。
その結果、ViTsは、大規模な事前トレーニングや強力なデータ拡張なしに、ImageNet上でスクラッチからトレーニングした時に、同様のサイズと滑らかさのネットより優れています。
論文 参考訳(メタデータ) (2021-06-03T02:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。