Advancing Cell Detection in Anterior Segment Optical Coherence Tomography Images
- URL: http://arxiv.org/abs/2406.17577v1
- Date: Tue, 25 Jun 2024 14:18:42 GMT
- Title: Advancing Cell Detection in Anterior Segment Optical Coherence Tomography Images
- Authors: Boyu Chen, Ameenat L. Solebo, Paul Taylor,
- Abstract summary: Anterior uveitis, a common form of eye inflammation, can lead to permanent vision loss if not promptly diagnosed.
Monitoring this condition involves quantifying inflammatory cells in the anterior chamber of the eye.
We propose an automated framework to detect cells in the AS- OCT images.
- Score: 5.726632481428478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anterior uveitis, a common form of eye inflammation, can lead to permanent vision loss if not promptly diagnosed. Monitoring this condition involves quantifying inflammatory cells in the anterior chamber (AC) of the eye, which can be captured using Anterior Segment Optical Coherence Tomography (AS-OCT). However, manually identifying cells in AS-OCT images is time-consuming and subjective. Moreover, existing automated approaches may have limitations in both the effectiveness of detecting cells and the reliability of their detection results. To address these challenges, we propose an automated framework to detect cells in the AS-OCT images. This framework consists of a zero-shot chamber segmentation module and a cell detection module. The first module segments the AC area in the image without requiring human-annotated training data. Subsequently, the second module identifies individual cells within the segmented AC region. Through experiments, our framework demonstrates superior performance compared to current state-of-the-art methods for both AC segmentation and cell detection tasks. Notably, we find that previous cell detection approaches could suffer from low recall, potentially overlooking a significant number of cells. In contrast, our framework offers an improved solution, which could benefit the diagnosis and study of anterior uveitis. Our code for cell detection is publicly available at: https://github.com/joeybyc/cell_detection.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
This paper proposes the novel end-to-end CAP framework to achieve efficient and stable cell tracking in one stage.
CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly.
Cap demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - Cell Tracking in C. elegans with Cell Position Heatmap-Based Alignment and Pairwise Detection [3.3998740964877463]
3D cell tracking in a living organism has a crucial role in live cell image analysis.
Cell detection is often inconsistent in consecutive frames due to touching cells and low-contrast images.
We propose a cell tracking method to address these issues, which has two main contributions.
arXiv Detail & Related papers (2024-03-20T08:53:56Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - DeGPR: Deep Guided Posterior Regularization for Multi-Class Cell
Detection and Counting [14.222014969736993]
Multi-class cell detection and counting is an essential task for many pathological diagnoses.
We propose guided posterior regularization (DeGPR) which assists an object detector by guiding it to exploit discriminative features among cells.
We validate our model on two publicly available datasets, and on MuCeD, a novel dataset that we contribute.
arXiv Detail & Related papers (2023-04-03T06:25:45Z) - Dual-View Selective Instance Segmentation Network for Unstained Live
Adherent Cells in Differential Interference Contrast Images [11.762090096790823]
Adherent cells have low contrast structures, fading edges, and irregular morphology.
We developed a novel deep-learning algorithm for segmenting unstained adherent cells in DIC images.
Our algorithm achieves an AP_segm of 0.555, which remarkably overtakes a benchmark by a margin of 23.6%.
arXiv Detail & Related papers (2023-01-27T02:22:33Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Cell Segmentation and Tracking using CNN-Based Distance Predictions and
a Graph-Based Matching Strategy [0.20999222360659608]
We present a method for the segmentation of touching cells in microscopy images.
By using a novel representation of cell borders, inspired by distance maps, our method is capable to utilize not only touching cells but also close cells in the training process.
This representation is notably robust to annotation errors and shows promising results for the segmentation of microscopy images containing in the training data underrepresented or not included cell types.
arXiv Detail & Related papers (2020-04-03T11:55:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.