Minuscule Cell Detection in AS-OCT Images with Progressive Field-of-View Focusing
- URL: http://arxiv.org/abs/2503.12249v1
- Date: Sat, 15 Mar 2025 20:13:00 GMT
- Title: Minuscule Cell Detection in AS-OCT Images with Progressive Field-of-View Focusing
- Authors: Boyu Chen, Ameenat L. Solebo, Daqian Shi, Jinge Wu, Paul Taylor,
- Abstract summary: A hallmark of anterior uveitis is the presence of inflammatory cells in the eye's anterior chamber.<n>Recent efforts aim to replace manual cell detection with automated computer vision approaches.<n>We propose a minuscule cell detection framework through a progressive field-of-view focusing strategy.
- Score: 6.84018472449944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anterior Segment Optical Coherence Tomography (AS-OCT) is an emerging imaging technique with great potential for diagnosing anterior uveitis, a vision-threatening ocular inflammatory condition. A hallmark of this condition is the presence of inflammatory cells in the eye's anterior chamber, and detecting these cells using AS-OCT images has attracted research interest. While recent efforts aim to replace manual cell detection with automated computer vision approaches, detecting extremely small (minuscule) objects in high-resolution images, such as AS-OCT, poses substantial challenges: (1) each cell appears as a minuscule particle, representing less than 0.005\% of the image, making the detection difficult, and (2) OCT imaging introduces pixel-level noise that can be mistaken for cells, leading to false positive detections. To overcome these challenges, we propose a minuscule cell detection framework through a progressive field-of-view focusing strategy. This strategy systematically refines the detection scope from the whole image to a target region where cells are likely to be present, and further to minuscule regions potentially containing individual cells. Our framework consists of two modules. First, a Field-of-Focus module uses a vision foundation model to segment the target region. Subsequently, a Fine-grained Object Detection module introduces a specialized Minuscule Region Proposal followed by a Spatial Attention Network to distinguish individual cells from noise within the segmented region. Experimental results demonstrate that our framework outperforms state-of-the-art methods for cell detection, providing enhanced efficacy for clinical applications. Our code is publicly available at: https://github.com/joeybyc/MCD.
Related papers
- SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
'SaccadeDet' is an innovative architecture for gigapixel-level object detection, inspired by the human eye saccadic movement.
Our approach, evaluated on the PANDA dataset, achieves an 8x speed increase over the state-of-the-art methods.
It also demonstrates significant potential in gigapixel-level pathology analysis through its application to Whole Slide Imaging.
arXiv Detail & Related papers (2024-07-25T11:22:54Z) - Advancing Cell Detection in Anterior Segment Optical Coherence Tomography Images [5.726632481428478]
Anterior uveitis, a common form of eye inflammation, can lead to permanent vision loss if not promptly diagnosed.
Monitoring this condition involves quantifying inflammatory cells in the anterior chamber of the eye.
We propose an automated framework to detect cells in the AS- OCT images.
arXiv Detail & Related papers (2024-06-25T14:18:42Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
This study evaluates cell image segmentation models under optical aberrations from fluorescence and bright field microscopy.
We train and test several segmentation models, including the Otsu threshold method and Mask R-CNN with different network heads.
In contrast, Cellpose 2.0 proves effective for complex cell images under similar conditions.
arXiv Detail & Related papers (2024-04-12T15:45:26Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
This paper tackles the challenges for vision modality from a multimodal point of view.
We propose Cross-modal Guidance (CMG) to tackle the redundant information issue and sparse space issue.
To learn a more compact latent space for the vision anomaly detector, CMLE learns a correlation structure matrix from the language modality.
arXiv Detail & Related papers (2023-10-04T13:44:56Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
This paper introduces a novel one-stage end-to-end detector specifically designed to detect small lesions in medical images.
Precise localization of small lesions presents challenges due to their appearance and the diverse contextual backgrounds in which they are found.
We refer to this new architecture as GravityNet, and the novel anchors as gravity points since they appear to be "attracted" by the lesions.
arXiv Detail & Related papers (2023-09-22T14:02:22Z) - From WSI-level to Patch-level: Structure Prior Guided Binuclear Cell
Fine-grained Detection [8.810499770542553]
Binuclear cell (BC) detection plays a significant role in predicting the risk of leukemia and other malignant tumors.
We propose a two-stage detection method inspired by the structure prior to BC based on deep learning.
The coarse detection network is a multi-task detection framework based on circular bounding boxes for cells detection, and central key points for nucleus detection.
arXiv Detail & Related papers (2022-08-26T12:32:05Z) - Active Gaze Control for Foveal Scene Exploration [124.11737060344052]
We propose a methodology to emulate how humans and robots with foveal cameras would explore a scene.
The proposed method achieves an increase in detection F1-score of 2-3 percentage points for the same number of gaze shifts.
arXiv Detail & Related papers (2022-08-24T14:59:28Z) - DETCID: Detection of Elongated Touching Cells with Inhomogeneous
Illumination using a Deep Adversarial Network [5.076419064097733]
Clostridioides difficile infection (C. diff) is the most common cause of death due to secondary infection in hospital patients in the U.S.
arXiv Detail & Related papers (2020-07-13T21:43:27Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z) - Deep Feature Fusion for Mitosis Counting [0.0]
The mitotic cell count is one of the most common tests to assess the aggressiveness or grade of breast cancer.
Deep learning networks have been adapted to medical applications which are able to automatically localize regions of interest.
A proposed method leverages Faster RCNN for object detection while fusing segmentation features generated by a UNet with RGB image features to achieve an F-score of 0.508 on the MITOS-ATYPIA 2014 mitosis counting challenge dataset.
arXiv Detail & Related papers (2020-02-01T20:20:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.