Towards Compositional Interpretability for XAI
- URL: http://arxiv.org/abs/2406.17583v1
- Date: Tue, 25 Jun 2024 14:27:03 GMT
- Title: Towards Compositional Interpretability for XAI
- Authors: Sean Tull, Robin Lorenz, Stephen Clark, Ilyas Khan, Bob Coecke,
- Abstract summary: We present an approach to defining AI models and their interpretability based on category theory.
We compare a wide range of AI models as compositional models.
We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically.
- Score: 3.3768167170511587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence (AI) is currently based largely on black-box machine learning models which lack interpretability. The field of eXplainable AI (XAI) strives to address this major concern, being critical in high-stakes areas such as the finance, legal and health sectors. We present an approach to defining AI models and their interpretability based on category theory. For this we employ the notion of a compositional model, which sees a model in terms of formal string diagrams which capture its abstract structure together with its concrete implementation. This comprehensive view incorporates deterministic, probabilistic and quantum models. We compare a wide range of AI models as compositional models, including linear and rule-based models, (recurrent) neural networks, transformers, VAEs, and causal and DisCoCirc models. Next we give a definition of interpretation of a model in terms of its compositional structure, demonstrating how to analyse the interpretability of a model, and using this to clarify common themes in XAI. We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically. This leads us to the more general notion of compositionally-interpretable (CI) models, which additionally include, for instance, causal, conceptual space, and DisCoCirc models. We next demonstrate the explainability benefits of CI models. Firstly, their compositional structure may allow the computation of other quantities of interest, and may facilitate inference from the model to the modelled phenomenon by matching its structure. Secondly, they allow for diagrammatic explanations for their behaviour, based on influence constraints, diagram surgery and rewrite explanations. Finally, we discuss many future directions for the approach, raising the question of how to learn such meaningfully structured models in practice.
Related papers
- Learning Discrete Concepts in Latent Hierarchical Models [73.01229236386148]
Learning concepts from natural high-dimensional data holds potential in building human-aligned and interpretable machine learning models.
We formalize concepts as discrete latent causal variables that are related via a hierarchical causal model.
We substantiate our theoretical claims with synthetic data experiments.
arXiv Detail & Related papers (2024-06-01T18:01:03Z) - Model Interpretation and Explainability: Towards Creating Transparency in Prediction Models [0.0]
Explainable AI (XAI) has a counterpart in analytical modeling which we refer to as model explainability.
We analyze a dataset of loans from a credit card company and apply three stages: execute and compare four different prediction methods, apply the best known explainability techniques in the current literature to the model training sets to identify feature importance (FI) (static case)
We found inconsistency in FI identification between the static and dynamic cases.
arXiv Detail & Related papers (2024-05-31T13:54:25Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Learning with Explanation Constraints [91.23736536228485]
We provide a learning theoretic framework to analyze how explanations can improve the learning of our models.
We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
arXiv Detail & Related papers (2023-03-25T15:06:47Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
In the thesis, we consider two different types of PGMs: Bayesian networks (BNs) which are static, and continuous time Bayesian networks which, as the name suggests, have a temporal component.
We are interested in recovering their true structure, which is the first step in learning any PGM.
arXiv Detail & Related papers (2023-01-30T20:26:13Z) - GAM(e) changer or not? An evaluation of interpretable machine learning
models based on additive model constraints [5.783415024516947]
This paper investigates a series of intrinsically interpretable machine learning models.
We evaluate the prediction qualities of five GAMs as compared to six traditional ML models.
arXiv Detail & Related papers (2022-04-19T20:37:31Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
We present a class of statistics that emphasize the topology as well as the geometry of representations.
We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection.
These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models.
arXiv Detail & Related papers (2022-03-10T17:14:14Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
This work demonstrates a simple approach to reduce the computational and memory complexity of a large class of structured models.
Experiments with neural parameterized structured models for language modeling, polyphonic music modeling, unsupervised grammar induction, and video modeling show that our approach matches the accuracy of standard models at large state spaces.
arXiv Detail & Related papers (2022-01-08T00:47:50Z) - Recurrence-Aware Long-Term Cognitive Network for Explainable Pattern
Classification [0.0]
We propose an LTCN-based model for interpretable pattern classification of structured data.
Our method brings its own mechanism for providing explanations by quantifying the relevance of each feature in the decision process.
Our interpretable model obtains competitive performance when compared to the state-of-the-art white and black boxes.
arXiv Detail & Related papers (2021-07-07T18:14:50Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
In modern data science, it is more interesting to understand the properties of the model, which parts could be replaced to obtain better results.
We use multi-objective evolutionary optimization for composite data-driven model learning to obtain the algorithm's desired properties.
arXiv Detail & Related papers (2021-07-07T11:17:09Z) - Explainable Matrix -- Visualization for Global and Local
Interpretability of Random Forest Classification Ensembles [78.6363825307044]
We propose Explainable Matrix (ExMatrix), a novel visualization method for Random Forest (RF) interpretability.
It employs a simple yet powerful matrix-like visual metaphor, where rows are rules, columns are features, and cells are rules predicates.
ExMatrix applicability is confirmed via different examples, showing how it can be used in practice to promote RF models interpretability.
arXiv Detail & Related papers (2020-05-08T21:03:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.