Model Interpretation and Explainability: Towards Creating Transparency in Prediction Models
- URL: http://arxiv.org/abs/2405.20794v1
- Date: Fri, 31 May 2024 13:54:25 GMT
- Title: Model Interpretation and Explainability: Towards Creating Transparency in Prediction Models
- Authors: Donald Kridel, Jacob Dineen, Daniel Dolk, David Castillo,
- Abstract summary: Explainable AI (XAI) has a counterpart in analytical modeling which we refer to as model explainability.
We analyze a dataset of loans from a credit card company and apply three stages: execute and compare four different prediction methods, apply the best known explainability techniques in the current literature to the model training sets to identify feature importance (FI) (static case)
We found inconsistency in FI identification between the static and dynamic cases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI (XAI) has a counterpart in analytical modeling which we refer to as model explainability. We tackle the issue of model explainability in the context of prediction models. We analyze a dataset of loans from a credit card company and apply three stages: execute and compare four different prediction methods, apply the best known explainability techniques in the current literature to the model training sets to identify feature importance (FI) (static case), and finally to cross-check whether the FI set holds up under what if prediction scenarios for continuous and categorical variables (dynamic case). We found inconsistency in FI identification between the static and dynamic cases. We summarize the state of the art in model explainability and suggest further research to advance the field.
Related papers
- Exchangeable Sequence Models Can Naturally Quantify Uncertainty Over Latent Concepts [5.095571791233068]
We show that pre-trained sequence models are naturally capable of probabilistic reasoning over exchangeable data points.
A sequence model learns the relationship between observations, which differs from typical Bayesian models.
We show the sequence prediction loss controls the quality of uncertainty quantification.
arXiv Detail & Related papers (2024-08-06T17:16:10Z) - Towards Compositional Interpretability for XAI [3.3768167170511587]
We present an approach to defining AI models and their interpretability based on category theory.
We compare a wide range of AI models as compositional models.
We find that what makes the standard 'intrinsically interpretable' models so transparent is brought out most clearly diagrammatically.
arXiv Detail & Related papers (2024-06-25T14:27:03Z) - Uncertainty Quantification for Local Model Explanations Without Model
Access [0.44241702149260353]
We present a model-agnostic algorithm for generating post-hoc explanations for a machine learning model.
Our algorithm uses a bootstrapping approach to quantify the uncertainty that inevitably arises when generating explanations from a finite sample of model queries.
arXiv Detail & Related papers (2023-01-13T21:18:00Z) - Testing Pre-trained Language Models' Understanding of Distributivity via
Causal Mediation Analysis [13.07356367140208]
We introduce DistNLI, a new diagnostic dataset for natural language inference.
We find that the extent of models' understanding is associated with model size and vocabulary size.
arXiv Detail & Related papers (2022-09-11T00:33:28Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
We introduce the methodology of Faithfulness-through-Counterfactuals.
It generates a counterfactual hypothesis based on the logical predicates expressed in the explanation.
It then evaluates if the model's prediction on the counterfactual is consistent with that expressed logic.
arXiv Detail & Related papers (2022-05-25T03:40:59Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Understanding Neural Abstractive Summarization Models via Uncertainty [54.37665950633147]
seq2seq abstractive summarization models generate text in a free-form manner.
We study the entropy, or uncertainty, of the model's token-level predictions.
We show that uncertainty is a useful perspective for analyzing summarization and text generation models more broadly.
arXiv Detail & Related papers (2020-10-15T16:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.