Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons
- URL: http://arxiv.org/abs/2406.17585v2
- Date: Fri, 30 Aug 2024 15:45:11 GMT
- Title: Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons
- Authors: Vyacheslav Kungurtsev, Fadwa Idlahcen, Petr Rysavy, Pavel Rytir, Ales Wodecki,
- Abstract summary: We present a guide to the foundations of learning Dynamic Bayesian Networks (DBNs) from data.
We present the formalism for a generic as well as a set of common types of DBNs for particular variable distributions.
- Score: 2.403231673869682
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a guide to the foundations of learning Dynamic Bayesian Networks (DBNs) from data in the form of multiple samples of trajectories for some length of time. We present the formalism for a generic as well as a set of common types of DBNs for particular variable distributions. We present the analytical form of the models, with a comprehensive discussion on the interdependence between structure and weights in a DBN model and their implications for learning. Next, we give a broad overview of learning methods and describe and categorize them based on the most important statistical features, and how they treat the interplay between learning structure and weights. We give the analytical form of the likelihood and Bayesian score functions, emphasizing the distinction from the static case. We discuss functions used in optimization to enforce structural requirements. We briefly discuss more complex extensions and representations. Finally we present a set of comparisons in different settings for various distinct but representative algorithms across the variants.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models.
We present a simple fix to this problem by constructing processes that fully exploit the structures, hence the name ComboStoc.
arXiv Detail & Related papers (2024-05-22T15:23:10Z) - DiSK: A Diffusion Model for Structured Knowledge [12.472921856815942]
Diffusion Models of Structured Knowledge (DiSK) is a new architecture and training approach specialized for structured data.
DiSK handles text, categorical, and continuous numerical data using a Gaussian mixture model approach.
arXiv Detail & Related papers (2023-12-08T18:59:14Z) - Federated Variational Inference Methods for Structured Latent Variable
Models [1.0312968200748118]
Federated learning methods enable model training across distributed data sources without data leaving their original locations.
We present a general and elegant solution based on structured variational inference, widely used in Bayesian machine learning.
We also provide a communication-efficient variant analogous to the canonical FedAvg algorithm.
arXiv Detail & Related papers (2023-02-07T08:35:04Z) - Discrete Latent Structure in Neural Networks [21.890439357275696]
This text explores three broad strategies for learning with discrete latent structure.
We show how most consist of the same small set of fundamental building blocks, but use them differently, leading to substantially different applicability and properties.
arXiv Detail & Related papers (2023-01-18T12:30:44Z) - Understanding Domain Learning in Language Models Through Subpopulation
Analysis [35.16003054930906]
We investigate how different domains are encoded in modern neural network architectures.
We analyze the relationship between natural language domains, model size, and the amount of training data used.
arXiv Detail & Related papers (2022-10-22T21:12:57Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - Structurally Diverse Sampling Reduces Spurious Correlations in Semantic
Parsing Datasets [51.095144091781734]
We propose a novel algorithm for sampling a structurally diverse set of instances from a labeled instance pool with structured outputs.
We show that our algorithm performs competitively with or better than prior algorithms in not only compositional template splits but also traditional IID splits.
In general, we find that diverse train sets lead to better generalization than random training sets of the same size in 9 out of 10 dataset-split pairs.
arXiv Detail & Related papers (2022-03-16T07:41:27Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.