Active partitioning: inverting the paradigm of active learning
- URL: http://arxiv.org/abs/2411.18254v1
- Date: Wed, 27 Nov 2024 11:47:07 GMT
- Title: Active partitioning: inverting the paradigm of active learning
- Authors: Marius Tacke, Matthias Busch, Kevin Linka, Christian J. Cyron, Roland C. Aydin,
- Abstract summary: We propose a novel, general-purpose partitioning algorithm.
Multiple models iteratively submit predictions for the dataset.
The best prediction for each data point is rewarded with training on that data point.
- Score: 0.0
- License:
- Abstract: Datasets often incorporate various functional patterns related to different aspects or regimes, which are typically not equally present throughout the dataset. We propose a novel, general-purpose partitioning algorithm that utilizes competition between models to detect and separate these functional patterns. This competition is induced by multiple models iteratively submitting their predictions for the dataset, with the best prediction for each data point being rewarded with training on that data point. This reward mechanism amplifies each model's strengths and encourages specialization in different patterns. The specializations can then be translated into a partitioning scheme. The amplification of each model's strengths inverts the active learning paradigm: while active learning typically focuses the training of models on their weaknesses to minimize the number of required training data points, our concept reinforces the strengths of each model, thus specializing them. We validate our concept -- called active partitioning -- with various datasets with clearly distinct functional patterns, such as mechanical stress and strain data in a porous structure. The active partitioning algorithm produces valuable insights into the datasets' structure, which can serve various further applications. As a demonstration of one exemplary usage, we set up modular models consisting of multiple expert models, each learning a single partition, and compare their performance on more than twenty popular regression problems with single models learning all partitions simultaneously. Our results show significant improvements, with up to 54% loss reduction, confirming our partitioning algorithm's utility.
Related papers
- Fitting Multiple Machine Learning Models with Performance Based Clustering [8.763425474439552]
Traditional machine learning approaches assume that data comes from a single generating mechanism, which may not hold for most real life data.
We introduce a clustering framework that eliminates this assumption by grouping the data according to the relations between the features and the target values.
We extend our framework to applications having streaming data where we produce outcomes using an ensemble of models.
arXiv Detail & Related papers (2024-11-10T19:38:35Z) - An Active Learning Framework for Inclusive Generation by Large Language Models [32.16984263644299]
Large Language Models (LLMs) generate text representative of diverse sub-populations.
We propose a novel clustering-based active learning framework, enhanced with knowledge distillation.
We construct two new datasets in tandem with model training, showing a performance improvement of 2%-10% over baseline models.
arXiv Detail & Related papers (2024-10-17T15:09:35Z) - Partial-Multivariate Model for Forecasting [28.120094495344453]
We propose a Transformer-based partial-multivariate model, PMformer, for forecasting problems.
We demonstrate that PMformer outperforms various univariate and complete-multivariate models.
We also highlight other advantages of PMformer: efficiency and robustness under missing features.
arXiv Detail & Related papers (2024-08-19T05:18:50Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.