NativE: Multi-modal Knowledge Graph Completion in the Wild
- URL: http://arxiv.org/abs/2406.17605v1
- Date: Thu, 28 Mar 2024 03:04:00 GMT
- Title: NativE: Multi-modal Knowledge Graph Completion in the Wild
- Authors: Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Binbin Hu, Ziqi Liu, Wen Zhang, Huajun Chen,
- Abstract summary: We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
- Score: 51.80447197290866
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-modal knowledge graph completion (MMKGC) aims to automatically discover the unobserved factual knowledge from a given multi-modal knowledge graph by collaboratively modeling the triple structure and multi-modal information from entities. However, real-world MMKGs present challenges due to their diverse and imbalanced nature, which means that the modality information can span various types (e.g., image, text, numeric, audio, video) but its distribution among entities is uneven, leading to missing modalities for certain entities. Existing works usually focus on common modalities like image and text while neglecting the imbalanced distribution phenomenon of modal information. To address these issues, we propose a comprehensive framework NativE to achieve MMKGC in the wild. NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities and employs a collaborative modality adversarial training framework to augment the imbalanced modality information. We construct a new benchmark called WildKGC with five datasets to evaluate our method. The empirical results compared with 21 recent baselines confirm the superiority of our method, consistently achieving state-of-the-art performance across different datasets and various scenarios while keeping efficient and generalizable. Our code and data are released at https://github.com/zjukg/NATIVE
Related papers
- MCSFF: Multi-modal Consistency and Specificity Fusion Framework for Entity Alignment [7.109735168520378]
Multi-modal entity alignment (MMEA) is essential for enhancing knowledge graphs and improving question-answering systems.
Existing methods often focus on integrating modalities through their complementarity but overlook the specificity of each modality.
We propose the Multi-modal Consistency and Specificity Fusion Framework (MCSFF), which innovatively integrates both complementary and specific aspects of modalities.
arXiv Detail & Related papers (2024-10-18T16:35:25Z) - IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment [17.570243718626994]
Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs)
We devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions.
We also propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations.
arXiv Detail & Related papers (2024-07-27T17:12:37Z) - MyGO: Discrete Modality Information as Fine-Grained Tokens for Multi-modal Knowledge Graph Completion [51.80447197290866]
We introduce MyGO to process, fuse, and augment the fine-grained modality information from MMKGs.
MyGO tokenizes multi-modal raw data as fine-grained discrete tokens and learns entity representations with a cross-modal entity encoder.
Experiments on standard MMKGC benchmarks reveal that our method surpasses 20 of the latest models.
arXiv Detail & Related papers (2024-04-15T05:40:41Z) - Unleashing the Power of Imbalanced Modality Information for Multi-modal
Knowledge Graph Completion [40.86196588992357]
Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge graphs.
We propose Adaptive Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality information.
Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC methods.
arXiv Detail & Related papers (2024-02-22T05:48:03Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - IMF: Interactive Multimodal Fusion Model for Link Prediction [13.766345726697404]
We introduce a novel Interactive Multimodal Fusion (IMF) model to integrate knowledge from different modalities.
Our approach has been demonstrated to be effective through empirical evaluations on several real-world datasets.
arXiv Detail & Related papers (2023-03-20T01:20:02Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge
Graph Completion [112.27103169303184]
Multimodal Knowledge Graphs (MKGs) organize visual-text factual knowledge.
MKGformer can obtain SOTA performance on four datasets of multimodal link prediction, multimodal RE, and multimodal NER.
arXiv Detail & Related papers (2022-05-04T23:40:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.