NativE: Multi-modal Knowledge Graph Completion in the Wild
- URL: http://arxiv.org/abs/2406.17605v1
- Date: Thu, 28 Mar 2024 03:04:00 GMT
- Title: NativE: Multi-modal Knowledge Graph Completion in the Wild
- Authors: Yichi Zhang, Zhuo Chen, Lingbing Guo, Yajing Xu, Binbin Hu, Ziqi Liu, Wen Zhang, Huajun Chen,
- Abstract summary: We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
- Score: 51.80447197290866
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Multi-modal knowledge graph completion (MMKGC) aims to automatically discover the unobserved factual knowledge from a given multi-modal knowledge graph by collaboratively modeling the triple structure and multi-modal information from entities. However, real-world MMKGs present challenges due to their diverse and imbalanced nature, which means that the modality information can span various types (e.g., image, text, numeric, audio, video) but its distribution among entities is uneven, leading to missing modalities for certain entities. Existing works usually focus on common modalities like image and text while neglecting the imbalanced distribution phenomenon of modal information. To address these issues, we propose a comprehensive framework NativE to achieve MMKGC in the wild. NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities and employs a collaborative modality adversarial training framework to augment the imbalanced modality information. We construct a new benchmark called WildKGC with five datasets to evaluate our method. The empirical results compared with 21 recent baselines confirm the superiority of our method, consistently achieving state-of-the-art performance across different datasets and various scenarios while keeping efficient and generalizable. Our code and data are released at https://github.com/zjukg/NATIVE
Related papers
- GAMED: Knowledge Adaptive Multi-Experts Decoupling for Multimodal Fake News Detection [18.157900272828602]
Multimodal fake news detection often involves modelling heterogeneous data sources, such as vision and language.
This paper develops a significantly novel approach, GAMED, for multimodal modelling.
It focuses on generating distinctive and discriminative features through modal decoupling to enhance cross-modal synergies.
arXiv Detail & Related papers (2024-12-11T19:12:22Z) - IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment [17.570243718626994]
Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs)
We devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions.
We also propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations.
arXiv Detail & Related papers (2024-07-27T17:12:37Z) - Tokenization, Fusion, and Augmentation: Towards Fine-grained Multi-modal Entity Representation [51.80447197290866]
Multi-modal knowledge graph completion (MMKGC) aims to discover unobserved knowledge from given knowledge graphs.
Existing MMKGC methods usually extract multi-modal features with pre-trained models.
We introduce a novel framework MyGO to tokenize, fuse, and augment the fine-grained multi-modal representations of entities.
arXiv Detail & Related papers (2024-04-15T05:40:41Z) - Noise-powered Multi-modal Knowledge Graph Representation Framework [52.95468915728721]
The rise of Multi-modal Pre-training highlights the necessity for a unified Multi-Modal Knowledge Graph representation learning framework.
We propose a novel SNAG method that utilizes a Transformer-based architecture equipped with modality-level noise masking.
Our approach achieves SOTA performance across a total of ten datasets, demonstrating its versatility.
arXiv Detail & Related papers (2024-03-11T15:48:43Z) - Unleashing the Power of Imbalanced Modality Information for Multi-modal
Knowledge Graph Completion [40.86196588992357]
Multi-modal knowledge graph completion (MMKGC) aims to predict the missing triples in the multi-modal knowledge graphs.
We propose Adaptive Multi-modal Fusion and Modality Adversarial Training (AdaMF-MAT) to unleash the power of imbalanced modality information.
Our approach is a co-design of the MMKGC model and training strategy which can outperform 19 recent MMKGC methods.
arXiv Detail & Related papers (2024-02-22T05:48:03Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - IMF: Interactive Multimodal Fusion Model for Link Prediction [13.766345726697404]
We introduce a novel Interactive Multimodal Fusion (IMF) model to integrate knowledge from different modalities.
Our approach has been demonstrated to be effective through empirical evaluations on several real-world datasets.
arXiv Detail & Related papers (2023-03-20T01:20:02Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge
Graph Completion [112.27103169303184]
Multimodal Knowledge Graphs (MKGs) organize visual-text factual knowledge.
MKGformer can obtain SOTA performance on four datasets of multimodal link prediction, multimodal RE, and multimodal NER.
arXiv Detail & Related papers (2022-05-04T23:40:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.