IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment
- URL: http://arxiv.org/abs/2407.19302v1
- Date: Sat, 27 Jul 2024 17:12:37 GMT
- Title: IBMEA: Exploring Variational Information Bottleneck for Multi-modal Entity Alignment
- Authors: Taoyu Su, Jiawei Sheng, Shicheng Wang, Xinghua Zhang, Hongbo Xu, Tingwen Liu,
- Abstract summary: Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs)
We devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions.
We also propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations.
- Score: 17.570243718626994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs), where the entities can be associated with related images. Most existing studies integrate multi-modal information heavily relying on the automatically-learned fusion module, rarely suppressing the redundant information for MMEA explicitly. To this end, we explore variational information bottleneck for multi-modal entity alignment (IBMEA), which emphasizes the alignment-relevant information and suppresses the alignment-irrelevant information in generating entity representations. Specifically, we devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions. Then, we propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations. Finally, we propose a modal-hybrid information contrastive regularizer to integrate all the refined modal-specific representations, enhancing the entity similarity between MMKGs to achieve MMEA. We conduct extensive experiments on two cross-KG and three bilingual MMEA datasets. Experimental results demonstrate that our model consistently outperforms previous state-of-the-art methods, and also shows promising and robust performance in low-resource and high-noise data scenarios.
Related papers
- Leveraging Entity Information for Cross-Modality Correlation Learning: The Entity-Guided Multimodal Summarization [49.08348604716746]
Multimodal Summarization with Multimodal Output (MSMO) aims to produce a multimodal summary that integrates both text and relevant images.
In this paper, we propose an Entity-Guided Multimodal Summarization model (EGMS)
Our model, building on BART, utilizes dual multimodal encoders with shared weights to process text-image and entity-image information concurrently.
arXiv Detail & Related papers (2024-08-06T12:45:56Z) - Multiple Heads are Better than One: Mixture of Modality Knowledge Experts for Entity Representation Learning [51.80447197290866]
Learning high-quality multi-modal entity representations is an important goal of multi-modal knowledge graph (MMKG) representation learning.
Existing methods focus on crafting elegant entity-wise multi-modal fusion strategies.
We introduce a novel framework with Mixture of Modality Knowledge experts (MoMoK) to learn adaptive multi-modal entity representations.
arXiv Detail & Related papers (2024-05-27T06:36:17Z) - MyGO: Discrete Modality Information as Fine-Grained Tokens for Multi-modal Knowledge Graph Completion [51.80447197290866]
We introduce MyGO to process, fuse, and augment the fine-grained modality information from MMKGs.
MyGO tokenizes multi-modal raw data as fine-grained discrete tokens and learns entity representations with a cross-modal entity encoder.
Experiments on standard MMKGC benchmarks reveal that our method surpasses 20 of the latest models.
arXiv Detail & Related papers (2024-04-15T05:40:41Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Pseudo-Label Calibration Semi-supervised Multi-Modal Entity Alignment [7.147651976133246]
Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs for integration.
We introduce a Pseudo-label Multimodal Entity Alignment (PCMEA) in a semi-supervised way.
We combine momentum-based contrastive learning to make full use of the labeled and unlabeled data, which improves the quality of pseudo-label and pulls aligned entities closer.
arXiv Detail & Related papers (2024-03-02T12:44:59Z) - Multi-Modal Knowledge Graph Transformer Framework for Multi-Modal Entity
Alignment [17.592908862768425]
We propose a novel MMEA transformer, called MoAlign, that hierarchically introduces neighbor features, multi-modal attributes, and entity types.
Taking advantage of the transformer's ability to better integrate multiple information, we design a hierarchical modifiable self-attention block in a transformer encoder.
Our approach outperforms strong competitors and achieves excellent entity alignment performance.
arXiv Detail & Related papers (2023-10-10T07:06:06Z) - MESED: A Multi-modal Entity Set Expansion Dataset with Fine-grained
Semantic Classes and Hard Negative Entities [25.059177235004952]
We propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities.
A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks.
The MESED dataset is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration.
arXiv Detail & Related papers (2023-07-27T14:09:59Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - Bi-Bimodal Modality Fusion for Correlation-Controlled Multimodal
Sentiment Analysis [96.46952672172021]
Bi-Bimodal Fusion Network (BBFN) is a novel end-to-end network that performs fusion on pairwise modality representations.
Model takes two bimodal pairs as input due to known information imbalance among modalities.
arXiv Detail & Related papers (2021-07-28T23:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.