Diffusion-based Adversarial Purification for Intrusion Detection
- URL: http://arxiv.org/abs/2406.17606v1
- Date: Tue, 25 Jun 2024 14:48:28 GMT
- Title: Diffusion-based Adversarial Purification for Intrusion Detection
- Authors: Mohamed Amine Merzouk, Erwan Beurier, Reda Yaich, Nora Boulahia-Cuppens, Frédéric Cuppens,
- Abstract summary: crafted perturbations mislead ML models, enabling attackers to evade detection or trigger false alerts.
adversarial purification has emerged as a compelling solution, particularly with diffusion models showing promising results.
This paper demonstrates the effectiveness of diffusion models in purifying adversarial examples in network intrusion detection.
- Score: 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The escalating sophistication of cyberattacks has encouraged the integration of machine learning techniques in intrusion detection systems, but the rise of adversarial examples presents a significant challenge. These crafted perturbations mislead ML models, enabling attackers to evade detection or trigger false alerts. As a reaction, adversarial purification has emerged as a compelling solution, particularly with diffusion models showing promising results. However, their purification potential remains unexplored in the context of intrusion detection. This paper demonstrates the effectiveness of diffusion models in purifying adversarial examples in network intrusion detection. Through a comprehensive analysis of the diffusion parameters, we identify optimal configurations maximizing adversarial robustness with minimal impact on normal performance. Importantly, this study reveals insights into the relationship between diffusion noise and diffusion steps, representing a novel contribution to the field. Our experiments are carried out on two datasets and against 5 adversarial attacks. The implementation code is publicly available.
Related papers
- Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis [12.133306321357999]
We propose an uncertainty-based method for detecting adversarial attacks on neural networks for semantic segmentation.
We conduct a detailed analysis of uncertainty-based detection of adversarial attacks and various state-of-the-art neural networks.
Our numerical experiments show the effectiveness of the proposed uncertainty-based detection method.
arXiv Detail & Related papers (2024-08-19T14:13:30Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
Adversarial purification is one of the promising approaches to defend neural networks against adversarial attacks.
We propose gUided Purification (COUP) algorithm, which purifies while keeping away from the classifier decision boundary.
Experimental results show that COUP can achieve better adversarial robustness under strong attack methods.
arXiv Detail & Related papers (2024-08-12T02:48:00Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - Watch the Watcher! Backdoor Attacks on Security-Enhancing Diffusion Models [65.30406788716104]
This work investigates the vulnerabilities of security-enhancing diffusion models.
We demonstrate that these models are highly susceptible to DIFF2, a simple yet effective backdoor attack.
Case studies show that DIFF2 can significantly reduce both post-purification and certified accuracy across benchmark datasets and models.
arXiv Detail & Related papers (2024-06-14T02:39:43Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
Diffusion-Based Purification (DBP) has emerged as an effective defense mechanism against adversarial attacks.
In this paper, we argue that the inherentity in the DBP process is the primary driver of its robustness.
arXiv Detail & Related papers (2024-04-22T16:10:38Z) - DisDet: Exploring Detectability of Backdoor Attack on Diffusion Models [23.502100653704446]
Some pioneering works have shown the vulnerability of the diffusion model against backdoor attacks.
In this paper, for the first time, we explore the detectability of the poisoned noise input for the backdoored diffusion models.
We propose a low-cost trigger detection mechanism that can effectively identify the poisoned input noise.
We then take a further step to study the same problem from the attack side, proposing a backdoor attack strategy that can learn the unnoticeable trigger.
arXiv Detail & Related papers (2024-02-05T05:46:31Z) - Adversarial Purification for Data-Driven Power System Event Classifiers
with Diffusion Models [0.8848340429852071]
Global deployment of phasor measurement units (PMUs) enables real-time monitoring of the power system.
Recent studies reveal that machine learning-based methods are vulnerable to adversarial attacks.
This paper proposes an effective adversarial purification method based on the diffusion model to counter adversarial attacks.
arXiv Detail & Related papers (2023-11-13T06:52:56Z) - Purify++: Improving Diffusion-Purification with Advanced Diffusion
Models and Control of Randomness [22.87882885963586]
Defense against adversarial attacks is important for AI safety.
Adversarial purification is a family of approaches that defend adversarial attacks with suitable pre-processing.
We propose Purify++, a new diffusion purification algorithm that is now the state-of-the-art purification method against several adversarial attacks.
arXiv Detail & Related papers (2023-10-28T17:18:38Z) - Data Forensics in Diffusion Models: A Systematic Analysis of Membership
Privacy [62.16582309504159]
We develop a systematic analysis of membership inference attacks on diffusion models and propose novel attack methods tailored to each attack scenario.
Our approach exploits easily obtainable quantities and is highly effective, achieving near-perfect attack performance (>0.9 AUCROC) in realistic scenarios.
arXiv Detail & Related papers (2023-02-15T17:37:49Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
adversarial vulnerability of deep neural networks has attracted significant attention in machine learning.
We propose to incorporate causality into mitigating adversarial vulnerability.
Our method can be seen as the first attempt to leverage causality for mitigating adversarial vulnerability.
arXiv Detail & Related papers (2021-06-11T06:55:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.