Aligning Programming Language and Natural Language: Exploring Design Choices in Multi-Modal Transformer-Based Embedding for Bug Localization
- URL: http://arxiv.org/abs/2406.17615v1
- Date: Tue, 25 Jun 2024 15:01:39 GMT
- Title: Aligning Programming Language and Natural Language: Exploring Design Choices in Multi-Modal Transformer-Based Embedding for Bug Localization
- Authors: Partha Chakraborty, Venkatraman Arumugam, Meiyappan Nagappan,
- Abstract summary: Bug localization refers to the identification of source code files which is in a programming language.
Our study evaluated 14 distinct embedding models to gain insights into the effects of various design choices.
Our findings indicate that the pre-training strategies significantly affect the quality of the embedding.
- Score: 0.7564784873669823
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Bug localization refers to the identification of source code files which is in a programming language and also responsible for the unexpected behavior of software using the bug report, which is a natural language. As bug localization is labor-intensive, bug localization models are employed to assist software developers. Due to the domain difference between source code files and bug reports, modern bug-localization systems, based on deep learning models, rely heavily on embedding techniques that project bug reports and source code files into a shared vector space. The creation of an embedding involves several design choices, but the impact of these choices on the quality of embedding and the performance of bug localization models remains unexplained in current research. To address this gap, our study evaluated 14 distinct embedding models to gain insights into the effects of various design choices. Subsequently, we developed bug localization models utilizing these embedding models to assess the influence of these choices on the performance of the localization models. Our findings indicate that the pre-training strategies significantly affect the quality of the embedding. Moreover, we discovered that the familiarity of the embedding models with the data has a notable impact on the bug localization model's performance. Notably, when the training and testing data are collected from different projects, the performance of the bug localization models exhibits substantial fluctuations.
Related papers
- Supporting Cross-language Cross-project Bug Localization Using Pre-trained Language Models [2.5121668584771837]
Existing techniques often struggle with generalizability and deployment due to their reliance on application-specific data.
This paper proposes a novel pre-trained language model (PLM) based technique for bug localization that transcends project and language boundaries.
arXiv Detail & Related papers (2024-07-03T01:09:36Z) - Defect Category Prediction Based on Multi-Source Domain Adaptation [8.712655828391016]
This paper proposes a multi-source domain adaptation framework that integrates adversarial training and attention mechanisms.
Experiments on 8 real-world open-source projects show that the proposed approach achieves significant performance improvements.
arXiv Detail & Related papers (2024-05-17T03:30:31Z) - What matters when building vision-language models? [52.8539131958858]
We develop Idefics2, an efficient foundational vision-language model with 8 billion parameters.
Idefics2 achieves state-of-the-art performance within its size category across various multimodal benchmarks.
We release the model (base, instructed, and chat) along with the datasets created for its training.
arXiv Detail & Related papers (2024-05-03T17:00:00Z) - A Deep Dive into Large Language Models for Automated Bug Localization and Repair [12.756202755547024]
Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR)
In this study, we take a deep dive into automated bug fixing utilizing LLMs.
This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information.
Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark.
arXiv Detail & Related papers (2024-04-17T17:48:18Z) - Too Few Bug Reports? Exploring Data Augmentation for Improved
Changeset-based Bug Localization [7.884766610628946]
We propose novel data augmentation operators that act on different constituent components of bug reports.
We also describe a data balancing strategy that aims to create a corpus of augmented bug reports.
arXiv Detail & Related papers (2023-05-25T19:06:01Z) - BigIssue: A Realistic Bug Localization Benchmark [89.8240118116093]
BigIssue is a benchmark for realistic bug localization.
We provide a general benchmark with a diversity of real and synthetic Java bugs.
We hope to advance the state of the art in bug localization, in turn improving APR performance and increasing its applicability to the modern development cycle.
arXiv Detail & Related papers (2022-07-21T20:17:53Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - DapStep: Deep Assignee Prediction for Stack Trace Error rePresentation [61.99379022383108]
We propose new deep learning models to solve the bug triage problem.
The models are based on a bidirectional recurrent neural network with attention and on a convolutional neural network.
To improve the quality of ranking, we propose using additional information from version control system annotations.
arXiv Detail & Related papers (2022-01-14T00:16:57Z) - A Fault Localization and Debugging Support Framework driven by Bug
Tracking Data [0.11915976684257382]
This thesis aims to provide a fault localization framework by combining data from various sources.
To achieve this, a bug classification schema is introduced, benchmarks are created, and a novel fault localization method based on historical data is proposed.
arXiv Detail & Related papers (2021-03-03T13:23:13Z) - DirectDebug: Automated Testing and Debugging of Feature Models [55.41644538483948]
Variability models (e.g., feature models) are a common way for the representation of variabilities and commonalities of software artifacts.
Complex and often large-scale feature models can become faulty, i.e., do not represent the expected variability properties of the underlying software artifact.
arXiv Detail & Related papers (2021-02-11T11:22:20Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
Spelling normalization for low resource languages is a challenging task because the patterns are hard to predict.
This work shows a comparison of a neural model and character language models with varying amounts on target language data.
Our usage scenario is interactive correction with nearly zero amounts of training examples, improving models as more data is collected.
arXiv Detail & Related papers (2020-10-20T17:31:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.