論文の概要: CoSafe: Evaluating Large Language Model Safety in Multi-Turn Dialogue Coreference
- arxiv url: http://arxiv.org/abs/2406.17626v1
- Date: Tue, 25 Jun 2024 15:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 14:00:49.089309
- Title: CoSafe: Evaluating Large Language Model Safety in Multi-Turn Dialogue Coreference
- Title(参考訳): CoSafe: マルチターン対話における大規模言語モデルの安全性評価
- Authors: Erxin Yu, Jing Li, Ming Liao, Siqi Wang, Zuchen Gao, Fei Mi, Lanqing Hong,
- Abstract要約: この研究は,大規模言語モデル(LLM)におけるマルチターン対話コアの安全性を初めて研究したものである。
私たちは14のカテゴリで1,400の質問のデータセットを作成しました。
LLaMA2-Chat-7bモデルでは56%、Mistral-7B-Instructモデルでは13.9%であった。
- 参考スコア(独自算出の注目度): 29.55937864144965
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large language models (LLMs) constantly evolve, ensuring their safety remains a critical research problem. Previous red-teaming approaches for LLM safety have primarily focused on single prompt attacks or goal hijacking. To the best of our knowledge, we are the first to study LLM safety in multi-turn dialogue coreference. We created a dataset of 1,400 questions across 14 categories, each featuring multi-turn coreference safety attacks. We then conducted detailed evaluations on five widely used open-source LLMs. The results indicated that under multi-turn coreference safety attacks, the highest attack success rate was 56% with the LLaMA2-Chat-7b model, while the lowest was 13.9% with the Mistral-7B-Instruct model. These findings highlight the safety vulnerabilities in LLMs during dialogue coreference interactions.
- Abstract(参考訳): 大規模言語モデル(LLM)が常に進化するにつれて、その安全性は依然として重要な研究課題である。
LLMの安全性のための以前のレッドチームアプローチは、主に単一プロンプト攻撃やゴールハイジャックに重点を置いていた。
我々の知る限り、私たちはマルチターン・ダイアログ・コア推論におけるLLM安全性を初めて研究した人物です。
私たちは14のカテゴリで1,400の質問のデータセットを作成しました。
次に,広く使用されている5つのオープンソースLCMについて,詳細な評価を行った。
その結果,マルチターンコア参照安全性攻撃では,LLaMA2-Chat-7bモデルでは56%,Mistral-7B-Instructモデルでは13.9%であった。
これらの結果は,対話型コア参照相互作用におけるLLMの安全性上の脆弱性を浮き彫りにした。
関連論文リスト
- Prompt Leakage effect and defense strategies for multi-turn LLM interactions [95.33778028192593]
システムプロンプトの漏洩は知的財産を侵害し、攻撃者に対する敵の偵察として機能する可能性がある。
我々は, LLM sycophancy 効果を利用して, 平均攻撃成功率 (ASR) を17.7%から86.2%に高めるユニークな脅威モデルを構築した。
7つのブラックボックス防衛戦略の緩和効果と、漏洩防止のためのオープンソースモデルを微調整する。
論文 参考訳(メタデータ) (2024-04-24T23:39:58Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERTは、新しいきめ細かいリスク分類に基づいて安全性を評価するための大規模なベンチマークである。
脆弱性を特定し、改善を通知し、言語モデルの全体的な安全性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-04-06T15:01:47Z) - Speak Out of Turn: Safety Vulnerability of Large Language Models in Multi-turn Dialogue [10.101013733390532]
大規模言語モデル(LLM)は、違法または非倫理的な応答を生成することが実証されている。
本稿では,人間は多ターン対話を利用してLSMを誘導し,有害な情報を生成することができると論じる。
論文 参考訳(メタデータ) (2024-02-27T07:11:59Z) - SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [107.82336341926134]
SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。
それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
論文 参考訳(メタデータ) (2024-02-07T17:33:54Z) - MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models [41.708401515627784]
我々は,Multimodal Large Language Models (MLLM) がクエリ関連画像によって容易に損なわれることを観察した。
画像ベース操作に対するMLLMの安全性クリティカルな評価を行うためのフレームワークであるMM-SafetyBenchを紹介する。
我々の研究は、潜在的に悪意のある悪用に対して、オープンソースのMLLMの安全性対策を強化し、強化するための協力的な努力の必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-11-29T12:49:45Z) - All Languages Matter: On the Multilingual Safety of Large Language Models [96.47607891042523]
我々は、大規模言語モデル(LLM)のための最初の多言語安全ベンチマークを構築した。
XSafetyは、複数の言語ファミリーにまたがる10言語にわたる14種類の一般的な安全問題をカバーしている。
本稿では,ChatGPTの多言語安全性向上のための簡易かつ効果的なプロンプト手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T05:23:34Z) - SafetyBench: Evaluating the Safety of Large Language Models [54.878612385780805]
SafetyBenchは、大規模言語モデル(LLM)の安全性を評価するための包括的なベンチマークである。
11,435 の多様な選択質問が 7 つの異なるカテゴリーの安全問題にまたがっている。
ゼロショット設定と少数ショット設定の両方で、中国語と英語のLLMを25回以上テストしたところ、GPT-4よりも大幅にパフォーマンス上の優位性を示しました。
論文 参考訳(メタデータ) (2023-09-13T15:56:50Z) - Safety Assessment of Chinese Large Language Models [51.83369778259149]
大規模言語モデル(LLM)は、侮辱や差別的なコンテンツを生成し、誤った社会的価値を反映し、悪意のある目的のために使用されることがある。
安全で責任があり倫理的なAIの展開を促進するため、LLMによる100万の強化プロンプトとレスポンスを含むセーフティプロンプトをリリースする。
論文 参考訳(メタデータ) (2023-04-20T16:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。