FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model
- URL: http://arxiv.org/abs/2406.17706v1
- Date: Tue, 25 Jun 2024 16:45:47 GMT
- Title: FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model
- Authors: Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, Jing Gao,
- Abstract summary: Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data.
Many domain-specific data are privately distributed across multiple owners.
We introduce FedBiOT, a resource-efficient LLM fine-tuning approach to federated learning.
- Score: 48.33280660752336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data. However, many domain-specific data are privately distributed across multiple owners. Thus, this dilemma raises the interest in how to perform LLM fine-tuning in federated learning (FL). However, confronted with limited computation and communication capacities, FL clients struggle to fine-tune an LLM effectively. To this end, we introduce FedBiOT, a resource-efficient LLM fine-tuning approach to FL. Specifically, our method involves the server generating a compressed LLM and aligning its performance with the full model. Subsequently, the clients fine-tune a lightweight yet important part of the compressed model, referred to as an adapter. Notice that as the server has no access to the private data owned by the clients, the data used for alignment by the server has a different distribution from the one used for fine-tuning by clients. We formulate the problem into a bi-level optimization problem to minimize the negative effect of data discrepancy and derive the updating rules for the server and clients. We conduct extensive experiments on LLaMA-2, empirically showing that the adapter has exceptional performance when reintegrated into the global LLM. The results also indicate that the proposed FedBiOT significantly reduces resource consumption compared to existing benchmarks, all while achieving comparable performance levels.
Related papers
- Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - SplitLoRA: A Split Parameter-Efficient Fine-Tuning Framework for Large Language Models [23.1321591734785]
SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL.
SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning.
arXiv Detail & Related papers (2024-07-01T04:13:25Z) - Automated Federated Pipeline for Parameter-Efficient Fine-Tuning of Large Language Models [21.864109456867784]
For many downstream tasks, it is necessary to fine-tune large language models (LLMs) using private data.
We propose an automated federated pipeline, named FedPipe, to fine-tune LLMs with minimal training cost.
Extensive experiments demonstrate that FedPipe expedites the model training and achieves higher accuracy than state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-04-09T16:50:30Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes [53.4856038354195]
Pre-trained large language models (LLMs) need fine-tuning to improve their responsiveness to natural language instructions.
FedKSeed employs zeroth-order optimization with a finite set of random seeds.
It significantly reduces transmission requirements between the server and clients to just a few random seeds.
arXiv Detail & Related papers (2023-12-11T13:03:21Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
This paper focuses on Offsite-Tuning (OFT), a representative technique that transfers transformer blocks between centralized LLMs and downstream emulators.
Inspired by these observations, we propose CRaSh, involving Clustering, Removing, and Sharing, a training-free strategy to derive improved emulators from LLMs.
Our findings demonstrate a linear connectivity among these optima falling over the same basin, thereby highlighting the effectiveness of CRaSh and OFT.
arXiv Detail & Related papers (2023-10-24T03:08:58Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.