SplitLoRA: A Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
- URL: http://arxiv.org/abs/2407.00952v1
- Date: Mon, 1 Jul 2024 04:13:25 GMT
- Title: SplitLoRA: A Split Parameter-Efficient Fine-Tuning Framework for Large Language Models
- Authors: Zheng Lin, Xuanjie Hu, Yuxin Zhang, Zhe Chen, Zihan Fang, Xianhao Chen, Ang Li, Praneeth Vepakomma, Yue Gao,
- Abstract summary: SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL.
SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning.
- Score: 23.1321591734785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The scalability of large language models (LLMs) in handling high-complexity models and large-scale datasets has led to tremendous successes in pivotal domains. While there is an urgent need to acquire more training data for LLMs, a concerning reality is the depletion of high-quality public datasets within a few years. In view of this, the federated learning (FL) LLM fine-tuning paradigm recently has been proposed to facilitate collaborative LLM fine-tuning on distributed private data, where multiple data owners collaboratively fine-tune a shared LLM without sharing raw data. However, the staggering model size of LLMs imposes heavy computing and communication burdens on clients, posing significant barriers to the democratization of the FL LLM fine-tuning paradigm. To address this issue, split learning (SL) has emerged as a promising solution by offloading the primary training workload to a server via model partitioning while exchanging activation/activation's gradients with smaller data sizes rather than the entire LLM. Unfortunately, research on the SL LLM fine-tuning paradigm is still in its nascent stage. To fill this gap, in this paper, we propose the first SL LLM fine-tuning framework, named SplitLoRA. SplitLoRA is built on the split federated learning (SFL) framework, amalgamating the advantages of parallel training from FL and model splitting from SL and thus greatly enhancing the training efficiency. It is worth noting that SplitLoRA is the inaugural open-source benchmark for SL LLM fine-tuning, providing a foundation for research efforts dedicated to advancing SL LLM fine-tuning. Extensive simulations validate that SplitLoRA achieves target accuracy in significantly less time than state-of-the-art LLM fine-tuning frameworks, demonstrating the superior training performance of SplitLoRA. The project page is available at https://fduinc.github.io/splitlora/.
Related papers
- Extend Model Merging from Fine-Tuned to Pre-Trained Large Language Models via Weight Disentanglement [72.97553348776425]
We make a pioneering effort to broaden the applicability of merging techniques from FT to PT LLMs.
We introduce an approach based on WeIght DisENtanglement (WIDEN) to effectively extend the merging scope.
We merge Qwen1.5-Chat (an FT LLM with instruction-following skills) with Sailor (a PT LLM with multilingual abilities) across 7B and 14B model scales.
arXiv Detail & Related papers (2024-08-06T10:46:46Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data.
Many domain-specific data are privately distributed across multiple owners.
We introduce FedBiOT, a resource-efficient LLM fine-tuning approach to federated learning.
arXiv Detail & Related papers (2024-06-25T16:45:47Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
We introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach to fine-tune large language models (LLMs)
Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs.
Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs.
arXiv Detail & Related papers (2023-10-13T07:38:52Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.