論文の概要: SurgeMOD: Translating image-space tissue motions into vision-based surgical forces
- arxiv url: http://arxiv.org/abs/2406.17707v1
- Date: Tue, 25 Jun 2024 16:46:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:41:09.707595
- Title: SurgeMOD: Translating image-space tissue motions into vision-based surgical forces
- Title(参考訳): SurgeMOD:画像空間の組織の動きを視覚ベースの手術力に変換する
- Authors: Mikel De Iturrate Reyzabal, Dionysios Malas, Shuai Wang, Sebastien Ourselin, Hongbin Liu,
- Abstract要約: 最小侵襲ロボット手術における視覚に基づく力推定の新しい手法を提案する。
呼吸や心臓循環といった自然なプロセスによって生じる内部運動を用いて、周波数領域の運動の空間的基盤を推測する。
本研究では,シリコーンファントムおよび前バイブオ実験において,点接触力を確実に推定できることを実証した。
- 参考スコア(独自算出の注目度): 6.4474263352749075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new approach for vision-based force estimation in Minimally Invasive Robotic Surgery based on frequency domain basis of motion of organs derived directly from video. Using internal movements generated by natural processes like breathing or the cardiac cycle, we infer the image-space basis of the motion on the frequency domain. As we are working with this representation, we discretize the problem to a limited amount of low-frequencies to build an image-space mechanical model of the environment. We use this pre-built model to define our force estimation problem as a dynamic constraint problem. We demonstrate that this method can estimate point contact forces reliably for silicone phantom and ex-vivo experiments, matching real readings from a force sensor. In addition, we perform qualitative experiments in which we synthesize coherent force textures from surgical videos over a certain region of interest selected by the user. Our method demonstrates good results for both quantitative and qualitative analysis, providing a good starting point for a purely vision-based method for surgical force estimation.
- Abstract(参考訳): 本稿では,映像から直接導出される臓器の動作の周波数領域に基づく最小侵襲ロボット手術における視覚に基づく力推定手法を提案する。
呼吸や心臓循環といった自然なプロセスによって生じる内部運動を用いて、周波数領域における運動の空間的基盤を推測する。
この表現に取り組んでおり、環境の空間的力学モデルを構築するために、この問題を限られた低頻度に識別する。
我々は、この事前構築されたモデルを用いて、力推定問題を動的制約問題として定義する。
本研究では,シリコーンファントムおよび前バイブオ実験において,実測値と実測値とを一致させることにより,点接触力を確実に推定できることを実証した。
さらに,ユーザが選択した特定の領域の外科的ビデオからコヒーレントな力のテクスチャを合成する定性的実験を行った。
本手法は, 定量的および定性的解析の両面で良好な結果を示し, 外科的力推定のための純粋視覚に基づく手法の出発点となる。
関連論文リスト
- Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
本研究では,シーンをレンダリングする動的領域の階層化モデリングを可能にする意味的セマンティックギアに基づく,時間的(4D)埋め込みの学習方法を提案する。
同時に、ほぼ無償で、当社のトラッキングアプローチは、既存のNeRFベースのメソッドでまだ達成されていない機能である、自由視点(free-view of interest)を可能にします。
論文 参考訳(メタデータ) (2024-06-06T03:37:39Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - Implicit Neural Representation for Physics-driven Actuated Soft Bodies [15.261578025057593]
本稿では、ニューラルネットワークによってパラメータ化されるアクチュエータ信号の最適化のために、微分可能、準静的、物理に基づくシミュレーション層を利用する。
材料空間の空間点からアクティベーション値への連続写像を可能にする関数を定義する。
顔画像の特定の場合の暗黙的モデルを下顎運動学に拡張し、高品質なキャプチャーシステムで捉えた表情を確実に再現できることを示す。
論文 参考訳(メタデータ) (2024-01-26T13:42:12Z) - Diffusion Priors for Dynamic View Synthesis from Monocular Videos [59.42406064983643]
ダイナミックノベルビュー合成は、ビデオ内の視覚的コンテンツの時間的進化を捉えることを目的としている。
まず、ビデオフレーム上に予め訓練されたRGB-D拡散モデルをカスタマイズ手法を用いて微調整する。
動的および静的なニューラルレイディアンス場を含む4次元表現に、微調整されたモデルから知識を蒸留する。
論文 参考訳(メタデータ) (2024-01-10T23:26:41Z) - SISMIK for brain MRI: Deep-learning-based motion estimation and model-based motion correction in k-space [0.0]
本研究では,脳の2次元スピンエコースキャンにおける動き推定と補正の振り返り手法を提案する。
この手法は、深いニューラルネットワークのパワーを利用してk空間の運動パラメータを推定する。
モデルに基づくアプローチを用いて、劣化した画像を復元し、「幻覚」を避ける。
論文 参考訳(メタデータ) (2023-12-20T17:38:56Z) - Modelling Human Visual Motion Processing with Trainable Motion Energy
Sensing and a Self-attention Network [1.9458156037869137]
本稿では,生体とコンピュータの視覚モデルとのギャップを埋めることで,人間の動作知覚のイメージ計算可能なモデルを提案する。
このモデルアーキテクチャは、生体視覚システムにおける運動知覚のコア構造であるV1-MTの計算を捉えることを目的としている。
サイリコ神経生理学では、我々のモデルの単位応答は、運動プーリングやスピードチューニングに関する哺乳類の神経記録に類似していることが明らかになっている。
論文 参考訳(メタデータ) (2023-05-16T04:16:07Z) - Learning How To Robustly Estimate Camera Pose in Endoscopic Videos [5.073761189475753]
カメラポーズ推定における2つの幾何学的損失を最小限に抑えるために,奥行きと光学的流れを推定するステレオ内視鏡の解を提案する。
最も重要なことは、入力画像の内容に応じてコントリビューションのバランスをとるために、2つの学習された画素単位の重みマッピングを導入することである。
パブリックなSCAREDデータセットに対する我々のアプローチを検証するとともに、新たなインビボデータセットであるStereoMISを導入しています。
論文 参考訳(メタデータ) (2023-04-17T07:05:01Z) - Differentiable Frequency-based Disentanglement for Aerial Video Action
Recognition [56.91538445510214]
ビデオにおける人間の行動認識のための学習アルゴリズムを提案する。
我々のアプローチは、主に斜めに配置されたダイナミックカメラから取得されるUAVビデオのために設計されている。
我々はUAV HumanデータセットとNEC Droneデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-09-15T22:16:52Z) - Contact-Aware Retargeting of Skinned Motion [49.71236739408685]
本稿では,自己接触を保存し,相互接続を防止する動作推定手法を提案する。
入力運動における自己接触と接地を同定し、出力骨格に適用するための動作を最適化する。
実験では,従来の手法を定量的に上回り,近年の成果よりも高い品質で再ターゲットされた動きを評価できるユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-09-15T17:05:02Z) - Optical Flow Estimation from a Single Motion-blurred Image [66.2061278123057]
画像内の動きのぼかしは、基本的なコンピュータビジョンの問題に実用的な関心を持つ可能性があります。
本研究では,単一動画像からの光流れをエンドツーエンドで推定する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-03-04T12:45:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。