MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
- URL: http://arxiv.org/abs/2406.17806v1
- Date: Sat, 22 Jun 2024 23:26:07 GMT
- Title: MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries?
- Authors: Xirui Li, Hengguang Zhou, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Cho-Jui Hsieh,
- Abstract summary: Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli.
This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies.
We identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive.
- Score: 70.77691645678804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans are prone to cognitive distortions -- biased thinking patterns that lead to exaggerated responses to specific stimuli, albeit in very different contexts. This paper demonstrates that advanced Multimodal Large Language Models (MLLMs) exhibit similar tendencies. While these models are designed to respond queries under safety mechanism, they sometimes reject harmless queries in the presence of certain visual stimuli, disregarding the benign nature of their contexts. As the initial step in investigating this behavior, we identify three types of stimuli that trigger the oversensitivity of existing MLLMs: Exaggerated Risk, Negated Harm, and Counterintuitive Interpretation. To systematically evaluate MLLMs' oversensitivity to these stimuli, we propose the Multimodal OverSenSitivity Benchmark (MOSSBench). This toolkit consists of 300 manually collected benign multimodal queries, cross-verified by third-party reviewers (AMT). Empirical studies using MOSSBench on 20 MLLMs reveal several insights: (1). Oversensitivity is prevalent among SOTA MLLMs, with refusal rates reaching up to 76% for harmless queries. (2). Safer models are more oversensitive: increasing safety may inadvertently raise caution and conservatism in the model's responses. (3). Different types of stimuli tend to cause errors at specific stages -- perception, intent reasoning, and safety judgement -- in the response process of MLLMs. These findings highlight the need for refined safety mechanisms that balance caution with contextually appropriate responses, improving the reliability of MLLMs in real-world applications. We make our project available at https://turningpoint-ai.github.io/MOSSBench/.
Related papers
- SG-Bench: Evaluating LLM Safety Generalization Across Diverse Tasks and Prompt Types [21.683010095703832]
We develop a novel benchmark to assess the generalization of large language model (LLM) safety across various tasks and prompt types.
This benchmark integrates both generative and discriminative evaluation tasks and includes extended data to examine the impact of prompt engineering and jailbreak on LLM safety.
Our assessment reveals that most LLMs perform worse on discriminative tasks than generative ones, and are highly susceptible to prompts, indicating poor generalization in safety alignment.
arXiv Detail & Related papers (2024-10-29T11:47:01Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
We propose toolns, a comprehensive framework designed for conducting safety evaluations of MLLMs.
Our framework consists of a comprehensive harmful query dataset and an automated evaluation protocol.
Based on our framework, we conducted large-scale experiments on 15 widely-used open-source MLLMs and 6 commercial MLLMs.
arXiv Detail & Related papers (2024-10-24T17:14:40Z) - ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs [72.13489820420726]
ProSA is a framework designed to evaluate and comprehend prompt sensitivity in large language models.
Our study uncovers that prompt sensitivity fluctuates across datasets and models, with larger models exhibiting enhanced robustness.
arXiv Detail & Related papers (2024-10-16T09:38:13Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
Existing evaluations of large language models' (LLMs) ability to recognize and reject unsafe user requests face three limitations.
First, existing methods often use coarse-grained of unsafe topics, and are over-representing some fine-grained topics.
Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
Third, existing evaluations rely on large LLMs for evaluation, which can be expensive.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - OR-Bench: An Over-Refusal Benchmark for Large Language Models [65.34666117785179]
Large Language Models (LLMs) require careful safety alignment to prevent malicious outputs.
This study proposes a novel method for automatically generating large-scale sets of "seemingly toxic prompts"
We then conduct a comprehensive study to measure the over-refusal of 25 popular LLMs across 8 model families.
arXiv Detail & Related papers (2024-05-31T15:44:33Z) - Quantifying and Mitigating Unimodal Biases in Multimodal Large Language Models: A Causal Perspective [9.633811630889237]
We propose a causal framework to interpret the biases in Visual Question Answering (VQA) problems.
We introduce a novel dataset with 12,000 challenging VQA instances requiring multi-hop reasoning.
Our experiments show that MLLMs perform poorly on MORE, indicating strong unimodal biases and limited semantic understanding.
arXiv Detail & Related papers (2024-03-27T08:38:49Z) - MM-SafetyBench: A Benchmark for Safety Evaluation of Multimodal Large Language Models [41.708401515627784]
We observe that Multimodal Large Language Models (MLLMs) can be easily compromised by query-relevant images.
We introduce MM-SafetyBench, a framework designed for conducting safety-critical evaluations of MLLMs against such image-based manipulations.
Our work underscores the need for a concerted effort to strengthen and enhance the safety measures of open-source MLLMs against potential malicious exploits.
arXiv Detail & Related papers (2023-11-29T12:49:45Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.