論文の概要: Automatically Adaptive Conformal Risk Control
- arxiv url: http://arxiv.org/abs/2406.17819v1
- Date: Tue, 25 Jun 2024 08:29:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 17:36:24.632178
- Title: Automatically Adaptive Conformal Risk Control
- Title(参考訳): 自動適応型コンフォーマルリスク制御
- Authors: Vincent Blot, Anastasios N Angelopoulos, Michael I Jordan, Nicolas J-B Brunel,
- Abstract要約: 本稿では,テストサンプルの難易度に適応して,統計的リスクの近似的条件制御を実現する手法を提案する。
我々のフレームワークは、ユーザが提供するコンディショニングイベントに基づく従来のコンディショニングリスク制御を超えて、コンディショニングに適した関数クラスのアルゴリズム的、データ駆動決定を行う。
- 参考スコア(独自算出の注目度): 49.95190019041905
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Science and technology have a growing need for effective mechanisms that ensure reliable, controlled performance from black-box machine learning algorithms. These performance guarantees should ideally hold conditionally on the input-that is the performance guarantees should hold, at least approximately, no matter what the input. However, beyond stylized discrete groupings such as ethnicity and gender, the right notion of conditioning can be difficult to define. For example, in problems such as image segmentation, we want the uncertainty to reflect the intrinsic difficulty of the test sample, but this may be difficult to capture via a conditioning event. Building on the recent work of Gibbs et al. [2023], we propose a methodology for achieving approximate conditional control of statistical risks-the expected value of loss functions-by adapting to the difficulty of test samples. Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning. We apply this framework to various regression and segmentation tasks, enabling finer-grained control over model performance and demonstrating that by continuously monitoring and adjusting these parameters, we can achieve superior precision compared to conventional risk-control methods.
- Abstract(参考訳): 科学とテクノロジーは、ブラックボックス機械学習アルゴリズムの信頼性と制御されたパフォーマンスを保証する効果的なメカニズムの必要性が高まっている。
これらの性能保証は、理想的には入力に条件付きで保持すべきであり、つまり、パフォーマンス保証は、入力が何であれ、少なくともほぼ保持されるべきである。
しかし、民族や性別といった形式化された離散的なグループ化を超えて、条件付けの正しい概念を定義することは困難である。
例えば、画像のセグメンテーションのような問題では、テストサンプルの本質的な難しさを反映する不確かさが望まれるが、条件付けイベントによるキャプチャは困難である。
本稿では,Gibs et al [2023] の最近の研究に基づいて,テストサンプルの難易度に適応して,損失関数の期待値である統計的リスクの近似条件制御を実現する手法を提案する。
我々のフレームワークは、ユーザが提供するコンディショニングイベントに基づく従来のコンディショニングリスク制御を超えて、コンディショニングに適した関数クラスのアルゴリズム的、データ駆動決定を行う。
この枠組みを様々な回帰・セグメント化タスクに適用し、モデル性能のきめ細かい制御を可能にし、これらのパラメータを継続的に監視・調整することにより、従来のリスク制御手法と比較して精度が良いことを示す。
関連論文リスト
- Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework [2.7898966850590625]
本稿では,未確認データに対する故障検出と条件モニタリングのための新しい手法を提案する。
我々は変分オートエンコーダを用いて、以前に見られた新しい未知条件の確率分布をキャプチャする。
故障は、健康指標のしきい値を確立することで検出され、そのモデルが重大で見えない断層を高い精度で識別することができる。
論文 参考訳(メタデータ) (2024-04-08T22:20:23Z) - Actively Learning Reinforcement Learning: A Stochastic Optimal Control
Approach [3.7728340443952577]
提案する枠組みは,2つある: (i) 活発な探索と意図的な情報収集を伴う強化学習, (i) ミスマッチのモデル化による状態と不確実性を制御し, (ii) 最適制御の膨大な計算コストを克服する。
我々は、強化学習を用いて最適制御法を達成することにより、両方の目的にアプローチする。
論文 参考訳(メタデータ) (2023-09-18T18:05:35Z) - Recursively Feasible Probabilistic Safe Online Learning with Control
Barrier Functions [63.18590014127461]
本稿では,CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
本研究では,ロバストな安全クリティカルコントローラの実現可能性について検討する。
次に、これらの条件を使って、イベントトリガーによるオンラインデータ収集戦略を考案します。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
強化学習(Reinforcement Learning, RL)は、非線形最適制御問題を扱うための制御手法である。
展示された約束にもかかわらず、RLは産業的な実践への顕著な翻訳をまだ見ていない。
確率の高い共同確率制約の満足度を保証できる「オークル」支援型制約付きQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-16T13:16:22Z) - Probabilistic Guarantees for Safe Deep Reinforcement Learning [6.85316573653194]
深層強化学習は多くの制御タスクにうまく適用されているが、安全上の懸念から、そのようなエージェントの安全クリティカルなシナリオへの応用は制限されている。
そこで我々は, 深層強化学習エージェントの安全性を評価するアルゴリズムMOSAICを提案する。
論文 参考訳(メタデータ) (2020-05-14T15:42:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。